higgs sector signatures of neutrino mass models
play

Higgs sector signatures of neutrino mass models Miha Nemev ek (IJS) - PowerPoint PPT Presentation

Higgs sector signatures of neutrino mass models Miha Nemev ek (IJS) Neutrinos at the High Energy Frontier workshop UMass, ACFI, July 18 th 2017 Mass origin Higgs 64 Weinberg 67 L y = y f L h f R m f = y v h ff m 2 f


  1. Higgs sector signatures of neutrino mass models Miha Nemev š ek (IJS) “Neutrinos at the High Energy Frontier” workshop UMass, ACFI, July 18 th 2017

  2. Mass origin Higgs ’64 Weinberg ’67 L y = y f L h f R m f = y v Γ h → ff ∝ m 2 f V t v m 1 ATLAS and CMS ATLAS & CMS ’16 Z Z V W LHC Run 1 κ Higgs era: discovery of mass origin t or W F 1 − 10 m v F κ coupling τ b b τ − 2 10 L number conserved ATLAS+CMS SM Higgs boson 3 − 10 µ µ [M, ] fit ε 68% CL Neutrinos massless 95% CL 4 − 10 1 2 − 10 1 10 10 Particle mass [GeV] mass in GeV

  3. Neutrino Mass origin m M ν T C ν Neutral fermions Majorana ’37 Implication is LNV 0 ν 2 β Racah, Furry ’37

  4. Lepton number violation searches Higgs LNV? neutrinos nuclei top mesons W 0 , Z 0 W, Z ... 0 ν 2 β π , K, D, B ν − ν osc. µ τ energy eV MeV GeV 125 GeV TeV

  5. Lepton number violation searches Higgs LNV neutrinos nuclei top mesons W 0 , Z 0 W, Z ... 0 ν 2 β π , K, D, B ν − ν osc. µ τ energy eV MeV GeV 125 GeV TeV

  6. Higgs and Neutrino Mass origin m M ν T C ν Neutral fermions Majorana ’37 Implication of LNV 0 ν 2 β Racah, Furry ’37 colliders, mesons, Higgs EFT: no light states Weinberg ’79 Λ � v y v 2 y LHLH Γ h → νν ∝ m 2 ˜ m ν = ˜ ν Λ Λ

  7. Higgs and Neutrino Mass origin type III ruled out type I ◆ 2 ✓ M D M ν = − M T D m − 1 Γ h → ν S ∝ M 2 Γ h → SS ∝ M 2 S M D D D m S Casas-Ibarra ’01 Pilaftsis ’91 Dev, Franceschini, Mohapatra ’12 Cely, Ibarra, Molinaro, Petcov ’12 talk by Das Ambiguous relation LNV mode forbidden Fine-tuned, ‘inverse’ Delphi ’91, CMS ’15

  8. Higgs and Neutrino Mass origin type III ruled out type I ◆ 2 ✓ M D M ν = − M T D m − 1 Γ h → ν S ∝ M 2 Γ h → SS ∝ M 2 S M D D D m S Casas-Ibarra ’01 Pilaftsis ’91 Dev, Franceschini, Mohapatra ’12 Cely, Ibarra, Molinaro, Petcov ’12 talk by Das Ambiguous relation LNV mode forbidden Fine-tuned, ‘inverse’ Delphi ’91, CMS ’15

  9. Higgs and Neutrino Mass origin type III ruled out type I ◆ 2 ✓ M D M ν = − M T D m − 1 Γ h → ν S ∝ M 2 Γ h → SS ∝ M 2 S M D D D m S Casas-Ibarra ’01 Dev, Franceschini, Mohapatra ’12 Pilaftsis ’91 Cely, Ibarra, Molinaro, Petcov ’12 Ambiguous relation LNV mode forbidden Fine-tuned, ‘inverse’ Delphi ’91, CMS ’15 no LNV type II Γ h → νν ∝ m 2 ν m ν = Y ∆ v L v 2

  10. Neutrino Mass origin Seesaw Left-Right Horizontal symmetry GUTs SU (2) L × SU (2) R × U (1) B − L SO (10) SU ( n ) F N ∈ L R N ∈ 16 F Minkowski ’77 Gell-Mann, Ramond, Slansky ’79 Yanagida ’79 Mohapatra, Senjanovi ć ’79 SU (5) ∆ L ∈ 15 H Glashow ’79

  11. Left-Right Pati, Salam ’74 Mohapatra, Pati ’75 talk by Rabi Minimal model Spontaneous parity breaking ∆ L (3 , 1 , 2) , Φ (2 , 2 , 0) , ∆ R (1 , 3 , 2) Senjanovi ć , Mohapatra ’75 Minkowski ’77 ∆ L ↔ ∆ R , Φ → Φ † { Mohapatra, Senjanovi ć ’79 P : Q L ↔ Q R , L L ↔ L R

  12. Left-Right Pati, Salam ’74 Mohapatra, Pati ’75 talk by Rabi Minimal model Spontaneous parity breaking ∆ L (3 , 1 , 2) , Φ (2 , 2 , 0) , ∆ R (1 , 3 , 2) Senjanovi ć , Mohapatra ’75 Minkowski ’77 ∆ L ↔ ∆ R , Φ → Φ † { Mohapatra, Senjanovi ć ’79 P : Q L ↔ Q R , L L ↔ L R ✓ ◆ φ + ✓ φ 0 ◆ 0 V ∈ λ ( Φ † Φ ) 2 + α ( Φ † Φ )( ∆ † v R ∆ R ) + ρ ( ∆ † R ∆ R ) 2 1 h Φ i = 2 Φ = φ 0 0 0 φ − 2 1 same for -symmetry C ✓ α √ ◆ ✓ v ✓ ◆ 0 0 ✓ ∆ + / ∆ ++ ◆ 2 ◆ h ∆ R i = mixing: ∆ R = h − ∆ θ ' . . 44 √ 0 ∆ 0 − ∆ + / v R 2 2 ρ v R R see appendix for φ 0 2 , ∆ L , ∆ ++ R

  13. Left-Right Pati, Salam ’74 Mohapatra, Pati ’75 talk by Rabi Minimal model Spontaneous parity breaking ∆ L (3 , 1 , 2) , Φ (2 , 2 , 0) , ∆ R (1 , 3 , 2) Senjanovi ć , Mohapatra ’75 Falkowski, Gross, Lebedev ’15 0.8 0.8 0.6 0.6 | sin θ | » sin Θ » » sin Θ » Future collider 0.4 0.4 outlook 2 σ | sin θ | < . 34 0.2 0.2 Buttazzo, Sala, Tesi ’15 0.0 0.0 0 50 100 150 200 250 300 400 500 600 700 800 900 1000 m H 2 @ GeV D m H 2 @ GeV D m ∆ in GeV

  14. Left-Right Pati, Salam ’74 Mohapatra, Pati ’75 talk by Rabi Minimal model Spontaneous parity breaking ∆ L (3 , 1 , 2) , Φ (2 , 2 , 0) , ∆ R (1 , 3 , 2) Senjanovi ć , Mohapatra ’75 Minkowski ’77 ∆ L ↔ ∆ R , Φ → Φ † { Mohapatra, Senjanovi ć ’79 P : Q L ↔ Q R , L L ↔ L R ✓ ◆ 0 V ∈ λ ( Φ † Φ ) 2 + α ( Φ † Φ )( ∆ † v R ∆ R ) + ρ ( ∆ † R ∆ R ) 2 h Φ i = 0 0 V ( ∆ L , Φ , ∆ R ) same for -symmetry C ✓ α ◆ ✓ v ✓ ◆ 0 0 ◆ h ∆ R i = mixing: h − ∆ θ ' . . 44 0 v R 2 ρ v R Indirect flavor limits e.g. Falkowski, Gross, Lebedev ’15 to early M W R & 3 TeV * * barring strong CP M W R > 1 . 6 TeV Beal, Bander, Soni ’82, ... Maiezza, MN ’14 Zhang et al. ’07, Maiezza, MN, Nesti, Senjanovi ć ’10 Bertolini, Nesti, Maiezza ’14

  15. N eutrino mass origin L N = Y ∆ L T R ∆ R L R M N = Y ∆ v R 2 Γ ∆ → NN ∝ m N ‘Higgs‘ origin of X & Y Coll. 2??? Majorana neutrinos Z LR m N , m ν W R coupling ⇒ N 2 N 1 ‘Majorana’ Higgses h, ∆ mass in GeV

  16. ‘Majorana’ Higgses N Γ ∆ → NN ∝ c 2 2 ∆ θ m N m ∆ =? N N Γ h → NN ∝ s 2 2 θ m N h m h = 125 GeV N Majorana connections Neutrino mass origin LNV decays ℓ ± ℓ ± N j N h, ∆ j ∆ L = 0 , 2 W ∓∗ R j j N j j 0 ν 2 β ℓ ±

  17. Majorana LNV connections Standard New physics talk by Rabi n p n p Mohapatra, W R W Senjanovi ć ’79, ’80 V Le α V Re α e e N = p 2 M 4 V R 2 X m ee 2 m ν W L V L X m ee N α ν α ν = M W R 4 m N ν N V Le α V Re α e e W R W n p n p includes LFV and Vissani ’99 triplets Tello, MN, Nesti, Senjanovi ć , Vissani ’10 in eV in eV ee | ν | Dirac mass | m ee | m N predicted in LR Tello, MN, Senjanovi ć ’12 lightest in eV lightest in eV m ν m ν

  18. Majorana LNV connections talks by Rabi, Das LHC Keung, Senjanovi ć , ’83 MN, Nesti, Measure directly M N Senjanovi ć , Zhang ’10 p e R Unambiguous seesaw W R MN, Senjanovi ć , Tello ’12 p M N − 1 M ν M D = iM N p N ) 1000 L = 33.2pb - 1 e R 500 1.64` 4 W R D0: dijets 3 2 100 M N e @ GeV D j 0 n 2 b H HM L 50 e + jet ê EM activity t N ~ 1 mm j no missing energy 10 e + Displaced Vertex m inv t N ~ 5 m e R jj = m N 5 CMS e + Missing Energy reach of 5-6 TeV at 14 TeV 1 1000 1500 2000 2500 3000 ATLAS: Ferrari et al. ’00 M W R @ GeV D CMS: Gninenko et al. ’07 ATLAS 1703.09127 missing E channel M W 0 > 4 . 7 TeV Neutrino jets di-jet channel ATLAS CONF-2017-016 Mitra et al. ’16 M W 0 > 5 . 11 TeV

  19. Majorana LNV connections CMS PAS-EXO-12-017 CMS 1210.2402 LHC Keung, Senjanovi ć , ’83 ATLAS 1203.54203 CMS-EXO-16-016, 2.2 fb -1 (13 TeV) M W R ,N τ > 2 . 3 TeV tag different flavors 6 measure directly M N CMS-EXO-16-023 e and mu CMS-EXO-16-023, 12.9 fb -1 (13 TeV) M W R ,N τ > 3 . 2 TeV p e R channels / N W R MN, Nesti, Senjanovi ć , Zhang ’10 p N e ) µ 1000 L = 33.2pb - 1 e R 500 1.64` 4 W R D0: dijets 3 2 100 M N e @ GeV D j 0 n 2 b H HM L 50 e + jet ê EM activity t N ~ 1 mm j no missing energy 10 e + Displaced Vertex m inv t N ~ 5 m 5 e R jj = m N CMS e + Missing Energy reach of 5-6 TeV at 14 TeV 1 1000 1500 2000 2500 3000 M W R @ GeV D ATLAS: Ferrari et al. ’00 CMS: Gninenko et al. ’07

  20. ‘Majorana’ SM Higgs N h decays h N ◆ 2 ✓ M W ◆ 2 Gunion et al. Snowmass ’86 ' θ 2 ✓ m N Γ h → NN Γ h → NN ∝ s 2 2 θ m N EFT SM+ h + N Γ h → bb 3 m b M W R Graesser ’07 X & Y Coll. 2??? M W R = 3 TeV Z LR m N < m h 30 % 10.0 â 10 4 2 20 % 5.0 G H h Æ N N L G I h Æ b b M W R coupling N 2 N 2 10 % N 1 N 1 1.0 0.5 10 20 30 40 50 60 m N in GeV mass in GeV

  21. ‘Right-handed’ Higgs decays ∆ to SM via mixing s θ = 5% 10% Γ ∆ → ff = s 2 θ Γ h → ff ( m h → m ∆ ) radiative loops ⇣ α Γ ∆ → γγ = m 3 ⌘ 2 | F ∆ | 2 ∆ Displaced photons Dev, (SM , W R , ∆ ++ L,R ) 64 π 4 π Mohapatra, Zhang ’16,

  22. ‘Right-handed’ Higgs decays ∆ Region of interest for ∆ → NN 20 GeV . m ∆ . 170 GeV Decay length ◆ 5 ✓ M W R ◆ 4 ✓ 40 GeV c τ 0 N ' 0 . 1 mm 5 TeV m N Leads to two DV with LNV ` ± j j DV resol. O (10) µm j ` ±

  23. ‘Right-handed’ Higgs production ∆ single N 3 LO σ ( gg → ∆ ) = s 2 Anastasiou et al. ’16 θ σ ( gg → h ) σ ( pp → V ∆ ) = s 2 θ σ ( pp → V h ) pair & c 2 v 2 ⇣ α s ⌘ 2 | F b + F t | 2 p θ hS ∆ ˆ 64 π (1 + δ ∆ S ) ˆ σ gg → ∆ S ' s β ˆ h ) 2 + ˆ s ∆ S associated s � m 2 s Γ 2 4 π (ˆ h large rate for m ∆ < m h / 2 σ gg → ∆∆ ' σ gg → h Br h → ∆∆ not very significant (accidental cancellation)

Recommend


More recommend