Higgs sector signatures of neutrino mass models Miha Nemev š ek (IJS) “Neutrinos at the High Energy Frontier” workshop UMass, ACFI, July 18 th 2017
Mass origin Higgs ’64 Weinberg ’67 L y = y f L h f R m f = y v Γ h → ff ∝ m 2 f V t v m 1 ATLAS and CMS ATLAS & CMS ’16 Z Z V W LHC Run 1 κ Higgs era: discovery of mass origin t or W F 1 − 10 m v F κ coupling τ b b τ − 2 10 L number conserved ATLAS+CMS SM Higgs boson 3 − 10 µ µ [M, ] fit ε 68% CL Neutrinos massless 95% CL 4 − 10 1 2 − 10 1 10 10 Particle mass [GeV] mass in GeV
Neutrino Mass origin m M ν T C ν Neutral fermions Majorana ’37 Implication is LNV 0 ν 2 β Racah, Furry ’37
Lepton number violation searches Higgs LNV? neutrinos nuclei top mesons W 0 , Z 0 W, Z ... 0 ν 2 β π , K, D, B ν − ν osc. µ τ energy eV MeV GeV 125 GeV TeV
Lepton number violation searches Higgs LNV neutrinos nuclei top mesons W 0 , Z 0 W, Z ... 0 ν 2 β π , K, D, B ν − ν osc. µ τ energy eV MeV GeV 125 GeV TeV
Higgs and Neutrino Mass origin m M ν T C ν Neutral fermions Majorana ’37 Implication of LNV 0 ν 2 β Racah, Furry ’37 colliders, mesons, Higgs EFT: no light states Weinberg ’79 Λ � v y v 2 y LHLH Γ h → νν ∝ m 2 ˜ m ν = ˜ ν Λ Λ
Higgs and Neutrino Mass origin type III ruled out type I ◆ 2 ✓ M D M ν = − M T D m − 1 Γ h → ν S ∝ M 2 Γ h → SS ∝ M 2 S M D D D m S Casas-Ibarra ’01 Pilaftsis ’91 Dev, Franceschini, Mohapatra ’12 Cely, Ibarra, Molinaro, Petcov ’12 talk by Das Ambiguous relation LNV mode forbidden Fine-tuned, ‘inverse’ Delphi ’91, CMS ’15
Higgs and Neutrino Mass origin type III ruled out type I ◆ 2 ✓ M D M ν = − M T D m − 1 Γ h → ν S ∝ M 2 Γ h → SS ∝ M 2 S M D D D m S Casas-Ibarra ’01 Pilaftsis ’91 Dev, Franceschini, Mohapatra ’12 Cely, Ibarra, Molinaro, Petcov ’12 talk by Das Ambiguous relation LNV mode forbidden Fine-tuned, ‘inverse’ Delphi ’91, CMS ’15
Higgs and Neutrino Mass origin type III ruled out type I ◆ 2 ✓ M D M ν = − M T D m − 1 Γ h → ν S ∝ M 2 Γ h → SS ∝ M 2 S M D D D m S Casas-Ibarra ’01 Dev, Franceschini, Mohapatra ’12 Pilaftsis ’91 Cely, Ibarra, Molinaro, Petcov ’12 Ambiguous relation LNV mode forbidden Fine-tuned, ‘inverse’ Delphi ’91, CMS ’15 no LNV type II Γ h → νν ∝ m 2 ν m ν = Y ∆ v L v 2
Neutrino Mass origin Seesaw Left-Right Horizontal symmetry GUTs SU (2) L × SU (2) R × U (1) B − L SO (10) SU ( n ) F N ∈ L R N ∈ 16 F Minkowski ’77 Gell-Mann, Ramond, Slansky ’79 Yanagida ’79 Mohapatra, Senjanovi ć ’79 SU (5) ∆ L ∈ 15 H Glashow ’79
Left-Right Pati, Salam ’74 Mohapatra, Pati ’75 talk by Rabi Minimal model Spontaneous parity breaking ∆ L (3 , 1 , 2) , Φ (2 , 2 , 0) , ∆ R (1 , 3 , 2) Senjanovi ć , Mohapatra ’75 Minkowski ’77 ∆ L ↔ ∆ R , Φ → Φ † { Mohapatra, Senjanovi ć ’79 P : Q L ↔ Q R , L L ↔ L R
Left-Right Pati, Salam ’74 Mohapatra, Pati ’75 talk by Rabi Minimal model Spontaneous parity breaking ∆ L (3 , 1 , 2) , Φ (2 , 2 , 0) , ∆ R (1 , 3 , 2) Senjanovi ć , Mohapatra ’75 Minkowski ’77 ∆ L ↔ ∆ R , Φ → Φ † { Mohapatra, Senjanovi ć ’79 P : Q L ↔ Q R , L L ↔ L R ✓ ◆ φ + ✓ φ 0 ◆ 0 V ∈ λ ( Φ † Φ ) 2 + α ( Φ † Φ )( ∆ † v R ∆ R ) + ρ ( ∆ † R ∆ R ) 2 1 h Φ i = 2 Φ = φ 0 0 0 φ − 2 1 same for -symmetry C ✓ α √ ◆ ✓ v ✓ ◆ 0 0 ✓ ∆ + / ∆ ++ ◆ 2 ◆ h ∆ R i = mixing: ∆ R = h − ∆ θ ' . . 44 √ 0 ∆ 0 − ∆ + / v R 2 2 ρ v R R see appendix for φ 0 2 , ∆ L , ∆ ++ R
Left-Right Pati, Salam ’74 Mohapatra, Pati ’75 talk by Rabi Minimal model Spontaneous parity breaking ∆ L (3 , 1 , 2) , Φ (2 , 2 , 0) , ∆ R (1 , 3 , 2) Senjanovi ć , Mohapatra ’75 Falkowski, Gross, Lebedev ’15 0.8 0.8 0.6 0.6 | sin θ | » sin Θ » » sin Θ » Future collider 0.4 0.4 outlook 2 σ | sin θ | < . 34 0.2 0.2 Buttazzo, Sala, Tesi ’15 0.0 0.0 0 50 100 150 200 250 300 400 500 600 700 800 900 1000 m H 2 @ GeV D m H 2 @ GeV D m ∆ in GeV
Left-Right Pati, Salam ’74 Mohapatra, Pati ’75 talk by Rabi Minimal model Spontaneous parity breaking ∆ L (3 , 1 , 2) , Φ (2 , 2 , 0) , ∆ R (1 , 3 , 2) Senjanovi ć , Mohapatra ’75 Minkowski ’77 ∆ L ↔ ∆ R , Φ → Φ † { Mohapatra, Senjanovi ć ’79 P : Q L ↔ Q R , L L ↔ L R ✓ ◆ 0 V ∈ λ ( Φ † Φ ) 2 + α ( Φ † Φ )( ∆ † v R ∆ R ) + ρ ( ∆ † R ∆ R ) 2 h Φ i = 0 0 V ( ∆ L , Φ , ∆ R ) same for -symmetry C ✓ α ◆ ✓ v ✓ ◆ 0 0 ◆ h ∆ R i = mixing: h − ∆ θ ' . . 44 0 v R 2 ρ v R Indirect flavor limits e.g. Falkowski, Gross, Lebedev ’15 to early M W R & 3 TeV * * barring strong CP M W R > 1 . 6 TeV Beal, Bander, Soni ’82, ... Maiezza, MN ’14 Zhang et al. ’07, Maiezza, MN, Nesti, Senjanovi ć ’10 Bertolini, Nesti, Maiezza ’14
N eutrino mass origin L N = Y ∆ L T R ∆ R L R M N = Y ∆ v R 2 Γ ∆ → NN ∝ m N ‘Higgs‘ origin of X & Y Coll. 2??? Majorana neutrinos Z LR m N , m ν W R coupling ⇒ N 2 N 1 ‘Majorana’ Higgses h, ∆ mass in GeV
‘Majorana’ Higgses N Γ ∆ → NN ∝ c 2 2 ∆ θ m N m ∆ =? N N Γ h → NN ∝ s 2 2 θ m N h m h = 125 GeV N Majorana connections Neutrino mass origin LNV decays ℓ ± ℓ ± N j N h, ∆ j ∆ L = 0 , 2 W ∓∗ R j j N j j 0 ν 2 β ℓ ±
Majorana LNV connections Standard New physics talk by Rabi n p n p Mohapatra, W R W Senjanovi ć ’79, ’80 V Le α V Re α e e N = p 2 M 4 V R 2 X m ee 2 m ν W L V L X m ee N α ν α ν = M W R 4 m N ν N V Le α V Re α e e W R W n p n p includes LFV and Vissani ’99 triplets Tello, MN, Nesti, Senjanovi ć , Vissani ’10 in eV in eV ee | ν | Dirac mass | m ee | m N predicted in LR Tello, MN, Senjanovi ć ’12 lightest in eV lightest in eV m ν m ν
Majorana LNV connections talks by Rabi, Das LHC Keung, Senjanovi ć , ’83 MN, Nesti, Measure directly M N Senjanovi ć , Zhang ’10 p e R Unambiguous seesaw W R MN, Senjanovi ć , Tello ’12 p M N − 1 M ν M D = iM N p N ) 1000 L = 33.2pb - 1 e R 500 1.64` 4 W R D0: dijets 3 2 100 M N e @ GeV D j 0 n 2 b H HM L 50 e + jet ê EM activity t N ~ 1 mm j no missing energy 10 e + Displaced Vertex m inv t N ~ 5 m e R jj = m N 5 CMS e + Missing Energy reach of 5-6 TeV at 14 TeV 1 1000 1500 2000 2500 3000 ATLAS: Ferrari et al. ’00 M W R @ GeV D CMS: Gninenko et al. ’07 ATLAS 1703.09127 missing E channel M W 0 > 4 . 7 TeV Neutrino jets di-jet channel ATLAS CONF-2017-016 Mitra et al. ’16 M W 0 > 5 . 11 TeV
Majorana LNV connections CMS PAS-EXO-12-017 CMS 1210.2402 LHC Keung, Senjanovi ć , ’83 ATLAS 1203.54203 CMS-EXO-16-016, 2.2 fb -1 (13 TeV) M W R ,N τ > 2 . 3 TeV tag different flavors 6 measure directly M N CMS-EXO-16-023 e and mu CMS-EXO-16-023, 12.9 fb -1 (13 TeV) M W R ,N τ > 3 . 2 TeV p e R channels / N W R MN, Nesti, Senjanovi ć , Zhang ’10 p N e ) µ 1000 L = 33.2pb - 1 e R 500 1.64` 4 W R D0: dijets 3 2 100 M N e @ GeV D j 0 n 2 b H HM L 50 e + jet ê EM activity t N ~ 1 mm j no missing energy 10 e + Displaced Vertex m inv t N ~ 5 m 5 e R jj = m N CMS e + Missing Energy reach of 5-6 TeV at 14 TeV 1 1000 1500 2000 2500 3000 M W R @ GeV D ATLAS: Ferrari et al. ’00 CMS: Gninenko et al. ’07
‘Majorana’ SM Higgs N h decays h N ◆ 2 ✓ M W ◆ 2 Gunion et al. Snowmass ’86 ' θ 2 ✓ m N Γ h → NN Γ h → NN ∝ s 2 2 θ m N EFT SM+ h + N Γ h → bb 3 m b M W R Graesser ’07 X & Y Coll. 2??? M W R = 3 TeV Z LR m N < m h 30 % 10.0 â 10 4 2 20 % 5.0 G H h Æ N N L G I h Æ b b M W R coupling N 2 N 2 10 % N 1 N 1 1.0 0.5 10 20 30 40 50 60 m N in GeV mass in GeV
‘Right-handed’ Higgs decays ∆ to SM via mixing s θ = 5% 10% Γ ∆ → ff = s 2 θ Γ h → ff ( m h → m ∆ ) radiative loops ⇣ α Γ ∆ → γγ = m 3 ⌘ 2 | F ∆ | 2 ∆ Displaced photons Dev, (SM , W R , ∆ ++ L,R ) 64 π 4 π Mohapatra, Zhang ’16,
‘Right-handed’ Higgs decays ∆ Region of interest for ∆ → NN 20 GeV . m ∆ . 170 GeV Decay length ◆ 5 ✓ M W R ◆ 4 ✓ 40 GeV c τ 0 N ' 0 . 1 mm 5 TeV m N Leads to two DV with LNV ` ± j j DV resol. O (10) µm j ` ±
‘Right-handed’ Higgs production ∆ single N 3 LO σ ( gg → ∆ ) = s 2 Anastasiou et al. ’16 θ σ ( gg → h ) σ ( pp → V ∆ ) = s 2 θ σ ( pp → V h ) pair & c 2 v 2 ⇣ α s ⌘ 2 | F b + F t | 2 p θ hS ∆ ˆ 64 π (1 + δ ∆ S ) ˆ σ gg → ∆ S ' s β ˆ h ) 2 + ˆ s ∆ S associated s � m 2 s Γ 2 4 π (ˆ h large rate for m ∆ < m h / 2 σ gg → ∆∆ ' σ gg → h Br h → ∆∆ not very significant (accidental cancellation)
Recommend
More recommend