linear stability of contact discontinuities for the
play

Linear stability of contact discontinuities for the nonisentropic - PDF document

Linear stability of contact discontinuities for the nonisentropic Euler equations in two space dimensions Alessandro Morando, Paola Trebeschi Department of Mathematics University of Brescia Lausanne, September 19-22, 2006 1. The Euler


  1. Linear stability of contact discontinuities for the nonisentropic Euler equations in two space dimensions Alessandro Morando, Paola Trebeschi Department of Mathematics University of Brescia Lausanne, September 19-22, 2006

  2. 1. The Euler equations We study the nonisentropic Euler equations of a perfect polytropic ideal gas in the plane R 2 : ∂ t p + u · ∇ p + γp ∇ · u = 0 , ρ ( ∂ t u + ( u · ∇ ) u ) + ∇ p = 0 , (1) ∂ t S + u · ∇ S = 0 . x = ( x 1 , x 2 ) ∈ R 2 , p = p ( t, x ) ∈ R the pressure, u ( t, x ) ∈ R 2 the velocity, S = S ( t, x ) ∈ R the entropy, ρ is the density, obeying the constitutive law 1 γ e − S ρ ( p, S ) = Ap γ with A > 0 given, γ > 1 adiabatic number. Problem: Stability of “contact discontinuities” Result: Under a “supersonic” condition (that precludes violent instability) we prove an ENERGY ESTIMATE for the linearized problem. 1

  3. 2. Discontinuities 2.1. Contact discontinuities Let Γ := { x 2 = ϕ ( t, x 1 ) } be a smooth hypersurphace and � ( p + , u + , S + ) if x 2 > ϕ ( t, x 1 ) ( p, u , S ) := ( p − , u − , S − ) if x 2 < ϕ ( t, x 1 ) , a smooth function on either side of Γ. Definition 1. ( p, u , S ) is a contact discontinuity solution of (1) if it is a classical solution of (1) on both sides of Γ and satisfies the Rankine-Hugoniot jump conditions at Γ : ∂ t ϕ = u + · ν = u − · ν , p + = p − , where ν := ( − ∂ x 1 ϕ, 1) is a (space) normal vector to Γ. These conditions yield that • the normal velocity and pressure are continuous across the interface Γ, • the only jumps experimented by the solution con- cern the tangential velocity and the entropy. Thus, a contact discontinuity is a vortex sheet . 2

  4. 2.2. Planar contact discontinuities A planar contact discontinuity is a piecewise constant solution to (1) � ( p r , u r , S r ) , if x 2 > σt + nx 1 , ( p, u , S ) = ( p l , u l , S l ) , if x 2 < σt + nx 1 . u r,l = ( v r,l , u r,l ) T are fixed vectors in R 2 , p r,l > 0 , S r,l , σ, n are fixed real numbers. • The previous quantities are related by the Rankine- Hugoniot jump conditions σ + v r n − u r = 0 , σ + v l n − u l = 0 , p r = p l =: p. • Without loss of generality, we may assume σ = u r = u l = 0 , n = 0 , v r + v l = 0 ( v r � = 0) . This corresponds to the following U r,l = ( p, v r,l , 0 , S r,l ) T , with v r + v l = 0 . 3

  5. 2.3. Stability of nonisentropic planar contact dis- continuities in dimension d = 2 , 3 (Fejer-Miles, 1958-1963 and Coulombel-Morando 2004) Consider a planar contact discontinuity U r,l = ( p, v r,l , 0 , S r,l ) T with v r + v l = 0 ( v r,l are the tangential velocities) and linearize the Euler equations and the jump conditions around this solution. • if d = 3, the linearized equations do not satisfy the Lopatinskii condition ⇒ violent instability ; � � 3 / 2 c 2 / 3 + c 2 / 3 • if d = 2 and | v r − v l | < 1 the linearized r l 2 2 equations do not satisfy the Lopatinskii condition ⇒ violent instability ; � � 3 / 2 • if d = 2 and | v r − v l | c 2 / 3 + c 2 / 3 > 1 the linearized r l 2 2 equations satisfy the weak Lopatinskii condition ⇒ weak stability , � p ′ ( ρ ) is the sound speed and c r , c l are the con- c ( ρ ) := stant values of c ( ρ ) in both sides of Γ. • In any case, the uniform Kreiss-Lopatinskii condition is never satisfied. 4

  6. 3. Energy estimates in two space dimensions 3.1. Reformulation of the problem in a fixed do- main The interface Γ := { x 2 = ϕ ( t, x 1 ) } is unknown so that the problem is a free boundary problem . • In order to work in a fixed domain we introduce the change of variables ( τ, y 1 , y 2 ) → ( t, x 1 , x 2 ) , ( t, x 1 ) = ( τ, y 1 ) , x 2 = Φ( τ, y 1 , y 2 ) , where Φ : R 3 → R , Φ( τ, y 1 , 0) = ϕ ( τ, y 1 ) , ∂ y 2 Φ( τ, y 1 , y 2 ) ≥ κ > 0 . • We define the new unknowns ( p + ♯ , u + ♯ , S + ♯ )( τ, y 1 , y 2 ) := ( p, u , S )( τ, y 1 , Φ( τ, y 1 , y 2 )) , ( p − ♯ , u − ♯ , S − ♯ )( τ, y 1 , y 2 ) := ( p, u , S )( τ, y 1 , Φ( t, y 1 , − y 2 )) . The functions p ± ♯ , u ± ♯ , S ± ♯ are smooth on the fixed domain { y 2 > 0 } . • For convenience, we drop the ♯ index and only keep the + and − exponents. • Finally, we write ( t, x 1 , x 2 ) instead of ( τ, y 1 , y 2 ). 5

  7. • Let us set u = ( v, u ). The existence of compressible vortex sheets amounts to prove the existence of smooth solutions of the first order system � u + − ∂ t Φ + − v + ∂ x 1 Φ + � ∂ x 2 p + ∂ t p + + v + ∂ x 1 p + + ∂ x 2 Φ + + γp + ∂ x 1 v + + γp + ∂ x 2 u + ∂ x 2 Φ + ∂ x 2 v + = 0 , ∂ x 2 Φ + − γp + ∂ x 1 Φ + � u + − ∂ t Φ + − v + ∂ x 1 Φ + � ∂ x 2 v + ∂ t v + + v + ∂ x 1 v + + ∂ x 2 Φ + ∂ x 2 Φ + ∂ x 2 p + = 0 , ρ + ∂ x 1 p + − 1 ∂ x 1 Φ + + 1 ρ + ∂ t u + + v + ∂ x 1 u + + � u + − ∂ t Φ + − v + ∂ x 1 Φ + � ∂ x 2 u + ∂ x 2 Φ + ∂ x 2 p + + 1 ∂ x 2 Φ + = 0 , ρ + � u + − ∂ t Φ + − v + ∂ x 1 Φ + � ∂ x 2 S + ∂ t S + + v + ∂ x 1 S + + ∂ x 2 Φ + = 0 , in the fixed domain { x 2 > 0 } , where Φ ± ( t, x 1 , x 2 ) := Φ( t, x 1 , ± x 2 ) (( p − , v − , u − , S − , Φ − ) must solve a similar system ) fulfilling the boundary conditions Φ + | x 2 =0 = Φ − | x 2 =0 = ϕ, ∂ t ϕ = − v + | x 2 =0 ∂ x 1 ϕ + u + | x 2 =0 = − v − | x 2 =0 ∂ x 1 ϕ + u − | x 2 =0 , p + | x 2 =0 = p − | x 2 =0 . The functions Φ ± should also satisfy ∂ x 2 Φ + ( t, x 1 , x 2 ) ≥ k, ∂ x 2 Φ − ( t, x 1 , x 2 ) ≤ − k. 6

  8. • The equations are not sufficient to determine the un- knowns U ± := ( p ± , v ± , u ± , S ± ) and Φ ± : another equation relating Φ, U and ϕ is needed in order to close the sys- tem. We may prescribe that Φ ± solve in the domain { x 2 > 0 } the eikonal equations ∂ t Φ ± + v ± ∂ x 1 Φ ± − u ± = 0 . With this choice the boundary matrix of the system for U ± has constant rank in the whole domain { x 2 ≥ 0 } and not only on the boundary { x 2 = 0 } . • Matrix form of the system For all U = ( p, v, u, S ) T , we get the system (in the interior { x 2 > 0 } ) L ( U + , ∇ Φ + ) U + = 0 , L ( U − , ∇ Φ − ) U − = 0 , ∂ t Φ ± + v ± ∂ x 1 Φ ± − u ± = 0 where L ( U + , ∇ Φ + ) U + = ∂ t U + + A 1 ( U + ) ∂ x 1 U + + � � 1 A 2 ( U + ) − ∂ t Φ + I 4 − ∂ x 1 Φ + A 1 ( U + ) ∂ x 2 U + + ∂ x 2 Φ + with the boundary conditions (on { x 2 = 0 } ) Φ + | x 2=0 = Φ − | x 2=0 = ϕ , ∂ t ϕ = − v + | x 2=0 ∂ x 1 ϕ + u + | x 2=0 = − v − | x 2=0 ∂ x 1 ϕ + u − | x 2=0 p + | x 2=0 = p − | x 2=0 . 7

  9. 3.2. The linearized equations • Consider a planar contact discontinuity     p p     v r v l U r = U l = Φ r,l = ± x 2 .   ,   , 0 0 S r S l We assume that v r + v l = 0 , v r > 0. • Let us consider U r,l + ε ˙ ± x 2 + ε ˙ U ± , ψ ± where we have set ˙ u ± , ˙ S ± ), ˙ U ± = ( ˙ p ± , ˙ ψ ± is a small perturbation of the exact solution U r,l , Φ r,l . S ± ) T must solve the • Up to second order, ˙ u ± , ˙ U ± = ( ˙ p ± , ˙ system L ′ ˙ U = 0 , in { x 2 > 0 } , B ( ˙ U, ψ ) = 0 , on { x 2 = 0 } , where we have set for shortness ˙ U := ( ˙ U + , ˙ U − ) T , � � � � A 1 ( U r ) 0 A 2 ( U r ) 0 L ′ ˙ U := ∂ t ˙ ∂ x 1 ˙ ∂ x 2 ˙ U + U + U, 0 A 1 ( U l ) 0 − A 2 ( U l ) and   ( v r − v l ) ∂ x 1 ψ − ( ˙ u + − ˙ u − )   . B ( ˙ U, ψ ) := ∂ t ψ + v r ∂ x 1 ψ − ˙ u + p + − p − 8

  10. • We have to introduce source terms; we study L ′ ˙ U = f in { x 2 > 0 } , B ( ˙ U, ψ ) = g, on { x 2 = 0 } • It is useful make another linear change of unknowns � � � � − ˙ p + γp + ˙ u + γp + ˙ p + ˙ u + v + , W 2 := 1 W 3 := 1 , W 4 := ˙ W 1 := ˙ S + , 2 c r 2 c r � � � � − ˙ p − γp + ˙ p − γp + ˙ ˙ v − , W 6 := 1 u − W 7 := 1 u − , W 8 := ˙ W 5 := ˙ S − 2 c l 2 c l • This change of unknowns W transform the system L ′ ˙ U = f in a symmetric hyperbolic form L W = f, in { x 2 > 0 } B ( W nc , ψ ) = g, on { x 2 = 0 } , with new data f, g , and L W := A 0 ∂ t W + A 1 ∂ x 1 W + A 2 ∂ x 2 W � � ∂ t ψ B ( W nc , ψ ) := MW nc + b . ∂ x 1 ψ W := ( W 1 , W 2 , W 3 , W 4 , W 5 , W 6 , W 7 , W 8 ) T , W c := ( W 1 , W 4 , W 5 , W 8 ) T , W nc := ( W 2 , W 3 , W 6 , W 7 ) T = (linear combination of p, u )     − c r − c r 0 v r − v l c l c l   ,   . M := − c r − c r 0 0 b := 1 v r − 1 1 1 − 1 0 0 9

  11. • We want to find an L 2 a priori estimate of the solution to the linearized problem L W = f, in { x 2 > 0 } B ( W nc , ψ ) = g, on { x 2 = 0 } , in Ω := { ( t, x 1 , x 2 ) ∈ R 3 s.t. x 2 > 0 } = R 2 × R + . The boundary ∂ Ω = { x 2 = 0 } is identified to R 2 . 3.3. The functional setting • Define H s γ ( R 2 ) := { u ∈ D ′ ( R 2 ) s.t. exp( − γt ) u ∈ H s ( R 2 ) } , equipped with the norm � u � H s γ ( R 2 ) := � exp( − γt ) u � H s ( R 2 ) . • Define similarly the space H s γ (Ω). • The space L 2 ( R + ; H s γ ( R 2 ) is the space of all functions v = v ( t, x 1 , x 2 ) in Ω such that the following norm � + ∞ ||| v ||| 2 � v ( · , x 2 ) � 2 γ ) := γ ( R 2 ) dx 2 L 2 ( H s H s 0 is finite. 10

Recommend


More recommend