new parameter choice rules for regularization with mixed
play

New Parameter Choice Rules for Regularization with Mixed Gaussian - PowerPoint PPT Presentation

Regularization Frequentist Approaches to Parameter Selection Numerical Results (preliminary) New Parameter Choice Rules for Regularization with Mixed Gaussian and Poissonian Noise Elias Helou (joint work with Alvaro De Pierro) ICMC - USP


  1. Regularization Frequentist Approaches to Parameter Selection Numerical Results (preliminary) New Parameter Choice Rules for Regularization with Mixed Gaussian and Poissonian Noise Elias Helou (joint work with ´ Alvaro De Pierro) ICMC - USP elias@icmc.usp.br 1 de agosto de 2013 Regularization Parameter Choice – 29 ◦ CBM Elias Helou

  2. Regularization Frequentist Approaches to Parameter Selection Numerical Results (preliminary) Sum´ ario Regularization Conditioning and Regularization A Deterministic Approach A Frequentist Approach Frequentist Approaches to Parameter Selection Existing Methods The New Technique Numerical Results (preliminary) Tomography The (Still Preliminary) Results Concluding Remarks Regularization Parameter Choice – 29 ◦ CBM Elias Helou

  3. Regularization Conditioning and Regularization Frequentist Approaches to Parameter Selection A Deterministic Approach Numerical Results (preliminary) A Frequentist Approach Ill-Conditioned Linear System Regularization Parameter Choice – 29 ◦ CBM Elias Helou

  4. Regularization Conditioning and Regularization Frequentist Approaches to Parameter Selection A Deterministic Approach Numerical Results (preliminary) A Frequentist Approach Ill-Conditioned Linear System Regularization Parameter Choice – 29 ◦ CBM Elias Helou

  5. Regularization Conditioning and Regularization Frequentist Approaches to Parameter Selection A Deterministic Approach Numerical Results (preliminary) A Frequentist Approach Ill-Conditioned Linear System Regularization Parameter Choice – 29 ◦ CBM Elias Helou

  6. Regularization Conditioning and Regularization Frequentist Approaches to Parameter Selection A Deterministic Approach Numerical Results (preliminary) A Frequentist Approach Ill-Conditioned Linear System Regularization Parameter Choice – 29 ◦ CBM Elias Helou

  7. Regularization Conditioning and Regularization Frequentist Approaches to Parameter Selection A Deterministic Approach Numerical Results (preliminary) A Frequentist Approach Ill-Conditioned Linear System Regularization Parameter Choice – 29 ◦ CBM Elias Helou

  8. Regularization Conditioning and Regularization Frequentist Approaches to Parameter Selection A Deterministic Approach Numerical Results (preliminary) A Frequentist Approach Ill-Conditioned Linear System Regularization Parameter Choice – 29 ◦ CBM Elias Helou

  9. Regularization Conditioning and Regularization Frequentist Approaches to Parameter Selection A Deterministic Approach Numerical Results (preliminary) A Frequentist Approach Ill-Conditioned Linear System Regularization Parameter Choice – 29 ◦ CBM Elias Helou

  10. Regularization Conditioning and Regularization Frequentist Approaches to Parameter Selection A Deterministic Approach Numerical Results (preliminary) A Frequentist Approach Ill-Conditioned Linear System x A x = b Regularization Parameter Choice – 29 ◦ CBM Elias Helou

  11. Regularization Conditioning and Regularization Frequentist Approaches to Parameter Selection A Deterministic Approach Numerical Results (preliminary) A Frequentist Approach Ill-Conditioned Linear System x x ǫ A x ǫ = b + ǫ =: b ǫ Regularization Parameter Choice – 29 ◦ CBM Elias Helou

  12. Regularization Conditioning and Regularization Frequentist Approaches to Parameter Selection A Deterministic Approach Numerical Results (preliminary) A Frequentist Approach Ill-Conditioned Linear System x x ǫ � x ǫ − x � = 25 . 00 � ǫ � Regularization Parameter Choice – 29 ◦ CBM Elias Helou

  13. Regularization Conditioning and Regularization Frequentist Approaches to Parameter Selection A Deterministic Approach Numerical Results (preliminary) A Frequentist Approach Ill-Conditioned Linear System x x ǫ κ ( A ) = 50 . 02 Regularization Parameter Choice – 29 ◦ CBM Elias Helou

  14. Regularization Conditioning and Regularization Frequentist Approaches to Parameter Selection A Deterministic Approach Numerical Results (preliminary) A Frequentist Approach Ill-Conditioned Linear System ◮ Ill-conditioned linear systems appear frequently in applications; Regularization Parameter Choice – 29 ◦ CBM Elias Helou

  15. Regularization Conditioning and Regularization Frequentist Approaches to Parameter Selection A Deterministic Approach Numerical Results (preliminary) A Frequentist Approach Ill-Conditioned Linear System ◮ Ill-conditioned linear systems appear frequently in applications; ◮ Condition number will be much higher than example; Regularization Parameter Choice – 29 ◦ CBM Elias Helou

  16. Regularization Conditioning and Regularization Frequentist Approaches to Parameter Selection A Deterministic Approach Numerical Results (preliminary) A Frequentist Approach Ill-Conditioned Linear System ◮ Ill-conditioned linear systems appear frequently in applications; ◮ Condition number will be much higher than example; ◮ Under the presence of noise, severe loss of precision. Regularization Parameter Choice – 29 ◦ CBM Elias Helou

  17. Regularization Conditioning and Regularization Frequentist Approaches to Parameter Selection A Deterministic Approach Numerical Results (preliminary) A Frequentist Approach Regularization ◮ Replace the original problem by a stable perturbed version from a family { P γ ( b ǫ ) } γ ∈ Γ ; Regularization Parameter Choice – 29 ◦ CBM Elias Helou

  18. Regularization Conditioning and Regularization Frequentist Approaches to Parameter Selection A Deterministic Approach Numerical Results (preliminary) A Frequentist Approach Regularization ◮ Replace the original problem by a stable perturbed version from a family { P γ ( b ǫ ) } γ ∈ Γ ; ◮ Example: Tikhonov Regularization (Γ = R + ) x tik � A x − b ǫ � 2 2 + γ � x � 2 γ ( b ǫ ) := argmin 2 x ∈ R n Regularization Parameter Choice – 29 ◦ CBM Elias Helou

  19. Regularization Conditioning and Regularization Frequentist Approaches to Parameter Selection A Deterministic Approach Numerical Results (preliminary) A Frequentist Approach Regularization ◮ Replace the original problem by a stable perturbed version from a family { P γ ( b ǫ ) } γ ∈ Γ ; ◮ Example: Tikhonov Regularization (Γ = R + ) x tik � A x − b ǫ � 2 2 + γ � x � 2 γ ( b ǫ ) := argmin 2 x ∈ R n = ( A T A + γI ) − 1 A T b ǫ ; Regularization Parameter Choice – 29 ◦ CBM Elias Helou

  20. Regularization Conditioning and Regularization Frequentist Approaches to Parameter Selection A Deterministic Approach Numerical Results (preliminary) A Frequentist Approach Regularization ◮ Replace the original problem by a stable perturbed version from a family { P γ ( b ǫ ) } γ ∈ Γ ; ◮ Example: Tikhonov Regularization (Γ = R + ) x tik � A x − b ǫ � 2 2 + γ � x � 2 γ ( b ǫ ) := argmin 2 x ∈ R n = ( A T A + γI ) − 1 A T b ǫ ; ◮ How to choose the regularization parameter γ ? Regularization Parameter Choice – 29 ◦ CBM Elias Helou

  21. Regularization Conditioning and Regularization Frequentist Approaches to Parameter Selection A Deterministic Approach Numerical Results (preliminary) A Frequentist Approach Deterministic Regularization Parameter Choice ◮ If � ǫ k � → 0, then the parameter selection function ℓ ( b ǫ k , � ǫ k � ) must satisfy: x ℓ ( b ǫ k , � ǫ k � ) ( b ǫ k ) → x ; Regularization Parameter Choice – 29 ◦ CBM Elias Helou

  22. Regularization Conditioning and Regularization Frequentist Approaches to Parameter Selection A Deterministic Approach Numerical Results (preliminary) A Frequentist Approach Deterministic Regularization Parameter Choice ◮ If � ǫ k � → 0, then the parameter selection function ℓ ( b ǫ k , � ǫ k � ) must satisfy: x ℓ ( b ǫ k , � ǫ k � ) ( b ǫ k ) → x ; ◮ Drawback: Regularization Parameter Choice – 29 ◦ CBM Elias Helou

  23. Regularization Conditioning and Regularization Frequentist Approaches to Parameter Selection A Deterministic Approach Numerical Results (preliminary) A Frequentist Approach Deterministic Regularization Parameter Choice ◮ If � ǫ k � → 0, then the parameter selection function ℓ ( b ǫ k , � ǫ k � ) must satisfy: x ℓ ( b ǫ k , � ǫ k � ) ( b ǫ k ) → x ; ◮ Drawback: ◮ Impossible if � ǫ � is not available (is it ever available?); Regularization Parameter Choice – 29 ◦ CBM Elias Helou

  24. Regularization Conditioning and Regularization Frequentist Approaches to Parameter Selection A Deterministic Approach Numerical Results (preliminary) A Frequentist Approach Deterministic Regularization Parameter Choice ◮ If � ǫ k � → 0, then the parameter selection function ℓ ( b ǫ k , � ǫ k � ) must satisfy: x ℓ ( b ǫ k , � ǫ k � ) ( b ǫ k ) → x ; ◮ Drawback: ◮ Impossible if � ǫ � is not available (is it ever available?); ◮ Says nothing when ǫ is not small. Regularization Parameter Choice – 29 ◦ CBM Elias Helou

  25. Regularization Conditioning and Regularization Frequentist Approaches to Parameter Selection A Deterministic Approach Numerical Results (preliminary) A Frequentist Approach Frequentist Regularization Parameter Choice ◮ A stochastic model for the problem may be available if it is possible to estimate E ǫǫ T and we assume E ǫ = 0 ; Regularization Parameter Choice – 29 ◦ CBM Elias Helou

Recommend


More recommend