neutronization and weak reactions in sne ia
play

Neutronization and weak reactions in SNe Ia Edward Brown Michigan - PowerPoint PPT Presentation

Neutronization and weak reactions in SNe Ia Edward Brown Michigan State University In this talk: 1. when and where do electron captures occur, and how they a ff ect the explosion 2. how to look for their e ff ects 3. nuclear physics inputs to


  1. Neutronization and weak reactions in SNe Ia Edward Brown Michigan State University In this talk: 1. when and where do electron captures occur, and how they a ff ect the explosion 2. how to look for their e ff ects 3. nuclear physics inputs

  2. to get an explosion to look (super fj cially) like a Ia… …detonate ≈ 1M sun C- O WD with a central density ≈ 10 8 g cm -3 (Woosley, yesterday) T here are potentially many ways to do this. 2

  3. Evidence that at least some SNe Ia come from near M Ch WDs with high central densities Abundance of 55 Mn (Seitenzahl ’13; next talk) late-time NIR spectroscopy of 2005df suggests ρ ≈ 10 9 g cm -3 (Diamond et al. ’15) 3

  4. ��� � ����� ������������ �� ������� MS CNO abundance sets starting neutron-to-proton ratio Ne (10) ➤ � � F (9) ➤ � ( �� �� ) = � � ( �� �� ) � − � . ��� � 11 12 ➤ O (8) � � ➤ 9 10 ➤ Analytical result N (7) ➤ ➤ W7 models .6 Dominguez et al. ➤ ➤ C (6) 56 Ni ejected (M sun ) ~25% variation 7 6 8 56 Ni in Explosion dynamics insensitive .4 Mass of to 22 Ne abundance; Townsley et Factor of 3 variation al. ’09 in the CNO + Fe abundances Can account for ≈ 10% of 56 Ni .2 -1 0 1 10 10 10 variation (Howell et al. ’09) Metallicity of Progenitor (Z/Z sun ) 4

  5. Testing this relation with the “twins” 2011fe, 2011by (see talk by Graham) Production of stable 58 Ni, 54 Fe a ff ects NUV (Lentz et al., Sauer et al.) Foley & Kirshner ’13, Graham et al. ‘14 5

  6. ����� ����� ��� ������� ��������� �� ������� ����������� ������ ���� simmering Nonaka et al. 2012; image courtesy M. Zingale � ≈ � × �� � �� ���� ( �������� ) �� ��� ���� ����������� ����� �� ≈ � × �� � � �� ∼ �� � ��� ��� ���� �� ��������� ���� ������� �������� ∼ �� �� ���� Woosley et al. (04) 6

  7. neutronization during simmering Piro & Bildsten ’08, Chamulak et al ‘08 ��� � > � . � × �� � � �� − � Mg (12) Na (11) ➤ ➤ ● ➤ Ne (10) ➤ ➤ F (9) ● ➤ ● ● ● 14 15 O (8) ➤ ➤ N (7) ➤ ● ● 11 12 13 ➤ C (6) ➤ ➤ ● 10 B (5) 8 9 Be (4) 6 7 Li (3) 3 4 5 He (2) H (1) A reaction flow out of a nuclide i is defined by 2 � t + T n (0) � d Y i � f ≡ d t . 1 � d t t � reaction 7

  8. decrease in e- abundance (equivalent to X ( 22 Ne) from Z ≈ 2/3 Z sun ) Piro & Bildsten ’08; Chamulak et al. ‘08 8 T = 0 . 85 GK; t H = 10 − 7 yr ● T = 0 . 67 GK; t H = 10 − 5 yr t H < t 23 ● [ Y e ( t = 0 ) − Y e ( t )] × 10 4 T = 0 . 54 GK; t H = 10 − 3 yr ● 6 ● T = 0 . 44 GK; t H = 10 − 1 yr 4 ● T = 0 . 35 GK; t H = 10 1 yr 2 ● T = 0 . 27 GK; t H = 10 3 yr 0 0 1 2 3 4 [ Y 12 ( t = 0 ) − Y 12 ( t )] × 10 3 8

  9. � �� �� � �� �� � �� �� �� ���� �� ������������ ���� ��������� ������ ��� ���� ������������� ��� �������� �������� ��� �� ����������� ����� � � � �� �� � �� �� � �� �� � �� �� ����� � � � �� � � �� � QSE products are sensitive to Y e De et al. ‘14 � �� + �� � �� � = + �� � �� �� � + �� � � �� � + �� � �� �� , � � � . �� � ≈ ��� A more comprehensive study (post- processing DDT) is in preparation (Miles, van Rossum, Townsley et al.) 9

  10. convective Urca 
 Denissenkov et al. ‘15 electron captures/beta decays on 23 Na, 25 Mg a ff ect the convective fm ow (Paczynski, Barkat & Wheeler, Iben, Mochkovitch, Stein & Wheeler) Chamulak et al. ‘08 Mixing becomes faster than 10 4 23 Na( e - , ν e ) 23 Ne ● t conv (s), t ec (s) 10 3 Energy loss via neutrinos acts as a ● bulk viscosity (Bisnovatyi-Kogan 10 2 ’01); con fj nes convective zone. ρ init = 1 . 0 × 10 9 gcm − 3 ρ init = 3 . 0 × 10 9 gcm − 3 This is not accounted for in MLT 10 ρ init = 6 . 0 × 10 9 gcm − 3 (Lesa ff re et al. ’05; Denissenkov et al. ’15) 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8 T (GK) 11

  11. Nuclear physics input “Despite experimental and theoretical progress, lack of knowledge of relevant or accurate weak-interaction data still constitutes a major obstacle in the simulation of some astrophysical scenarios today.” Langanke & Martinez-Pineado 2003, RMP • Supernovae (both core-collapse and white dwarf) • Accreting neutron stars • Nucleosynthesis (r-, s-process) 12

  12. J oint I nstitute for N uclear A strophysics— C enter for the E volution of the E lements MA2 MA1 Aprahamian , Aprahamian , Bardayan, Wiescher Clark, Nunes, Schatz , Wiescher H-Burn Aprahamian , Wiescher H & He Burn He-Burn Wiescher , Reddy A1.1 B1.1 A1.2 C-Burn Pyconuclear Reddy , Wiescher , Timmes Aprahamian , Clark, B1.2 A1.3 Reddy , Schatz Masses Screening Wiescher , Timmes B1.3 A1.4 Aprahamian , Clark, Neutron Capture Nunes, Reddy Weak Reactions Reddy , Schatz , Ott, Zegers B1.4 A1.5 E. Brown, Reddy Neutron Production Transport Aprahamian , McLaughlin, A1.6 B2.1 E. Brown, Galloway, Schatz , Wiescher Observations Heger, Schatz X-ray Burst Beers , Frebel A2.1 B3.1 McLaughlin, Burrows, First Stars NS Mergers Ott, Reddy , Schatz , Heger, Herwig, Timmes A3.1 B3.2 Zegers i-process X-ray LC E. Brown, Galloway, Herwig, Woodward A3.2 Heger, Schatz B4.1 X-ray r- and ν p-process Burrows, Heger, Herwig, A3.3 Spectra Galloway,Cackett McLaughlin, Ott, Schatz , Truran B4.2 Early Stars Superburst A3.4 Heger, Herwig, Timmes E. Brown, Galloway, Heger, Schatz B4.3 NS Supernovae NS Chem Crust A3.5 Burrows, McLaughlin, Ott, Reddy Brown, Reddy , Schatz Nuclear Evol B4.4 B4.4 A4.1 Brown, Burrows, Ott, Beers , Herwig, Frebel, Reddy , Schatz , Zegers O’Shea, Timmes , Truran JINA-CEE NSF Physics Frontier Center 13

  13. Charge-exchange group at NSCL (R. Zegers) 1. perform charge-exchange MA2 MA1 experiments (for example, Aprahamian , Aprahamian , Bardayan, 56 Ni(p,n) 56 Cu measures transition Wiescher Clark, Nunes, Schatz , Wiescher H-Burn Aprahamian , Wiescher H & He Burn He-Burn A1.1 Wiescher , Reddy B1.1 rates in β - direction; 46 Ti(t, 3 He+ γ ) 46 Sc A1.2 C-Burn Pyconuclear Reddy , Wiescher , Timmes Aprahamian , Clark, B1.2 A1.3 Masses Reddy , Schatz Screening Wiescher , Timmes at intermediate energies to B1.3 A1.4 Aprahamian , Clark, Neutron Capture Nunes, Reddy Weak Reactions Reddy , Schatz , Ott, Zegers B1.4 benchmark and test theoretical rate A1.5 E. Brown, Reddy Neutron Production Transport Aprahamian , McLaughlin, A1.6 B2.1 E. Brown, Galloway, Schatz , Wiescher calculations Observations Heger, Schatz X-ray Burst Beers , Frebel A2.1 B3.1 McLaughlin, Burrows, First Stars NS Mergers Ott, Reddy , Schatz , Heger, Herwig, Timmes B3.2 A3.1 Zegers i-process E. Brown, Galloway, X-ray LC 2. work together hand-in-hand with Herwig, Woodward A3.2 B4.1 Heger, Schatz r- and ν p-process X-ray Burrows, Heger, Herwig, Spectra A3.3 Galloway,Cackett nuclear theorists and astrophysicists McLaughlin, Ott, Schatz , Truran B4.2 Early Stars Superburst A3.4 Heger, Herwig, Timmes E. Brown, Galloway, Heger, Schatz B4.3 NS Supernovae to develop improved weak-rate sets NS Chem Crust A3.5 Burrows, McLaughlin, Ott, Reddy Brown, Reddy , Schatz Nuclear Evol B4.4 B4.4 A4.1 and perform improved astrophysical Brown, Burrows, Ott, Beers , Herwig, Frebel, Reddy , Schatz , Zegers O’Shea, Timmes , Truran simulations JINA-CEE NSF Physics Frontier Center 14

  14. PHYSICAL REVIEW C 77 , 024307 (2008) Gamow-Teller strength for the analog transitions to the first T = 1 / 2 , J π = 3 / 2 − states in 13 C and 13 N and the implications for type Ia supernovae R. G. T. Zegers, 1,2,3,* E. F. Brown, 1,2,3 H. Akimune, 4 Sam M. Austin, 1,3 A. M. van den Berg, 5 B. A. Brown, 1,2,3 D. A. Chamulak, 2,3 Y. Fujita, 6 M. Fujiwara, 7,8 S. Gal` es, 9 M. N. Harakeh, 5 H. Hashimoto, 8 R. Hayami, 10 G. W. Hitt, 1,2,3 M. Itoh, 11 T. Kawabata, 12 K. Kawase, 8 M. Kinoshita, 4 K. Nakanishi, 8 S. Nakayama, 10 S. Okumura, 8 Y. Shimbara, 1,3 M. Uchida, 13 H. Ueno, 14 T. Yamagata, 4 and M. Yosoi 8 1 National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, Michigan 48824-1321, USA - - - - 3/2 T= 3/2 3/2 T= 3/2 3/2 T= 3/2 3/2 T= 3/2 15.1 MeV • Normally, 13 N decays via β + (Q = 4 1 2 3 2.22 MeV) - + β β • Electron Fermi energy is 5.1 MeV, so capture into excited state ( E = - - 3.68 MeV) of 13 C is possible 3/2 T= 1/2 3/2 T= 1/2 3.68 M eV 3.51 M eV 5 6 • Increases capture rate - - 1/2 T= 1/2 1/2 T= 1/2 • Increases heat deposition 7 + β (Q=2.22 MeV) 13 13 13 13 O N C B - - T =1/2 T = 1/2 T = 3/2 T =3/2 z z z z 15

  15. Completed: Comprehensive evaluation of theoretical electron-capture rates in pf-shell near stability. JINA-CEE NSF Physics Frontier Center 16

Recommend


More recommend