neutrinoless double beta decay from lattice qcd
play

Neutrinoless Double Beta Decay from Lattice QCD Amy Nicholson UC - PowerPoint PPT Presentation

Neutrinoless Double Beta Decay from Lattice QCD Amy Nicholson UC Berkeley Lattice 2016 Southampton, UK Pauli 1930 History Chadwick 1932 Racah Majorana 1937 1937 Fermi 1934 Goppert-Mayer 1935 Lepton Number Neutrinos have no known


  1. Neutrinoless Double Beta Decay from Lattice QCD Amy Nicholson UC Berkeley Lattice 2016 Southampton, UK

  2. Pauli 1930 History Chadwick 1932 Racah Majorana 1937 1937 Fermi 1934 Goppert-Mayer 1935

  3. Lepton Number Neutrinos have no known charge or other additively conserved quantum number 𝜉 𝜉 R 𝜉 μ - μ + 𝜌 - μ - μ + 𝜌 + 𝜉 μ 𝜉 μ

  4. Lepton Number Neutrinos have no known charge or other additively conserved quantum number y b n e d d ? i b y t r 𝜉 R i o c i F l e 𝜉 R 𝜉 R h μ - μ + 𝜌 - μ - μ + 𝜌 + 𝜉 R 𝜉 L

  5. Neutrinos have masses! Takaaki Kajita 𝜉 R x 𝜉 R 𝜉 L (Super-K) Arthur B. McDonald (SNO) Nobel Prize, 2015

  6. Lepton Number Neutrinos have no known charge or other additively conserved quantum number But they’re oscillation experiments don’t tell us absolute tiny! 𝜉 R x ~ m ββ mass scale 𝜉 R 𝜉 L 0 𝝃𝛾𝛾 will! μ - μ + 𝜌 - μ - μ + 𝜌 + 𝜉 R 𝜉 L

  7. Majorana or Dirac? • Anything not forbidden by symmetry should occur in nature ⌘ † ⇣ ⌘ ⇣ L ˜ ¯ ˜ L 5 = − m H HL • Why are neutrinos so light? • Dirac mass on its own requires fine-tuning

  8. Majorana or Dirac? • Anything not forbidden by symmetry should occur in nature ✓ ◆ M L M D ⌘ † ⇣ ⌘ ⇣ L ˜ ¯ ˜ L 5 = − m H HL M D M R • Why are neutrinos so light? • Dirac mass on its own requires fine-tuning

  9. Majorana or Dirac? • Anything not forbidden by symmetry should occur in dim-4 operator not allowed nature ✓ ◆ M L M D ⌘ † ⇣ ⌘ ⇣ L ˜ ¯ ˜ L 5 = − m H HL M D M R • Why are neutrinos so light? • Dirac mass on its own requires fine-tuning

  10. Majorana or Dirac? • Anything not forbidden by symmetry should occur in nature ✓ ◆ 0 M L M D ⌘ † ⇣ ⌘ ⇣ L ˜ ¯ ˜ L 5 = − m H HL M D M R • Why are neutrinos so light? • Dirac mass on its own requires fine-tuning

  11. Majorana or Dirac? • Anything not forbidden by symmetry should occur in nature ✓ ◆ 0 M L M D ⌘ † ⇣ ⌘ ⇣ L ˜ ¯ ˜ L 5 = − m H HL M D M R • Why are neutrinos so m l ∼ M 2 D /M R m h ∼ M R light? • Dirac mass on its own requires fine-tuning

  12. Majorana or Dirac? • Anything not forbidden by symmetry should occur in nature ✓ ◆ 0 M L M D ⌘ † ⇣ ⌘ ⇣ L ˜ ¯ ˜ L 5 = − m H HL M D M R • Why are neutrinos so m l ∼ M 2 D /M R m h ∼ M R light? • Dirac mass on its own m l ∼ 0 . 05 eV M D ∼ 200 GeV requires fine-tuning M R ∼ 10 15 GeV

  13. If observed, could help explain matter/anti-matter asymmetry in the universe! Jansen (1996) Bödeker, Moore, Rummukainen (2000) Fodor (2000)

  14. Experiment Nuclear physics gives us a natural filter for the process Two broken pairs All nucleons A=76 paired

  15. Experiment Nuclear physics gives us a natural filter for the process Two broken pairs Energetically forbidden All nucleons A=76 paired

  16. Experiment Nuclear physics gives us a natural filter for the process Second order, Two broken pairs allowed All nucleons A=76 paired

  17. Experiment Neutrinoless mode can be isolated using spectroscopic methods

  18. Experiment Neutrinoless mode can be isolated using spectroscopic methods

  19. Experiment Neutrinoless mode can be isolated using spectroscopic methods

  20. Experiment Cuore 0 𝜉𝛾𝛾 decay 130 Te Gerda 76 Ge Sno+ 130 Te nEXO 136 Xe

  21. How can LQCD contribute?

  22. Standard picture: long-range contribution g A ~ g A ~ g A l g A A J μ (p 2 ) n n

  23. Short-range contribution: probe for heavy physics l Black box: Valle & Schecter, Fig.: H. Päs, W. Rodejohann New J.Phys. 17 (2015) no.11, 115010

  24. Short-range contribution: probe for heavy physics ~1/M R l Black box: Valle & Schecter, Fig.: H. Päs, W. Rodejohann New J.Phys. 17 (2015) no.11, 115010

  25. Short-range contribution: probe for heavy physics x m 𝛾𝛾 ~1/M R ~1/M R l Black box: Valle & Schecter, Fig.: H. Päs, W. Rodejohann New J.Phys. 17 (2015) no.11, 115010

  26. Short-range contribution: probe for heavy physics ~1/M R Black box: Valle & Schecter, Fig.: H. Päs, W. Rodejohann New J.Phys. 17 (2015) no.11, 115010

  27. Short-range contribution: probe for heavy physics 0 𝝃𝛾𝛾 experiments may help ~1/M R constrain R-parity violating coefficients Black box: Valle & Schecter, Fig.: H. Päs, W. Rodejohann New J.Phys. 17 (2015) no.11, 115010

  28. Short-range contribution: probe for heavy physics ~1/M R Chiral EFT O (p -2 ) O (p 0 ) O (p 0 ) O (p 2 ) Prezeau, Ramsey-Musolf, Vogel (2003)

  29. Short-range contribution: probe for heavy physics ~1/M R Chiral EFT O (p -2 ) O (p 0 ) O (p 0 ) O (p 2 ) Prezeau, Ramsey-Musolf, Vogel (2003)

  30. Effective Lagrangian Prezeau, Ramsey-Musolf, Vogel (2003) • Nine operators: • 𝜌 → 𝜌 : only need parity even • Vector operators suppressed by m e

  31. Effective Lagrangian Prezeau, Ramsey-Musolf, Vogel (2003) • Nine operators: • 𝜌 → 𝜌 : only need parity even • Vector operators suppressed by m e

  32. Effective Lagrangian Prezeau, Ramsey-Musolf, Vogel (2003) • Nine operators: • 𝜌 → 𝜌 : only need parity even • Vector operators suppressed by m e Calculate LECs; EFT then determines nn → pp transition via pion exchange diagram

  33. ✔ ✔ ✔ ✔ ✔ Left-right symmetric models O ++ O ++ 1+ 3+ Prezeau, Ramsey-Musolf, Vogel (2003), Savage (1999)

  34. Contractions • Exact momentum projection at source 𝛒 - t=t f and sink spin color • Must add color mixed versions of Prezeau, Ramsey-Musolf, Vogel ops 1&2 O i t=0 q L τ − γ µ q L � � ⇥ ⇤ O −− 1+ = ¯ q R τ − γ µ q R ¯ O 0�� q L τ � γ µ q L � ⇤ ⇥ � q R τ � γ µ q R 1+ = ¯ ¯ � � ⇥ ⇤ � � ⇥ ⇤ O −− 2+ = q R τ − q L ¯ q R τ − q L ¯ + q L τ − q R ¯ q L τ − q R ¯ 𝛒 - t=N t - t i O 0�� � ⇤ ⇥ � � ⇤ ⇥ � q R τ � q L q R τ � q L q L τ � q R q L τ � q R 2+ = ¯ ¯ + ¯ ¯ q L τ − γ µ q L q R τ − γ µ q R � � ⇥ ⇤ � � ⇥ ⇤ O −− 3+ = ¯ q L τ − γ µ q L ¯ + ¯ q R τ − γ µ q R ¯

  35. Contractions • Exact momentum projection at source 𝛒 - t=t f and sink spin color • Must add color mixed versions of Prezeau, Ramsey-Musolf, Vogel ops 1&2 O i t=0 q L τ − γ µ q L � � ⇥ ⇤ O −− 1+ = ¯ q R τ − γ µ q R ¯ O 0�� q L τ � γ µ q L � ⇤ ⇥ � q R τ � γ µ q R 1+ = ¯ ¯ � � ⇥ ⇤ � � ⇥ ⇤ O −− 2+ = q R τ − q L ¯ q R τ − q L ¯ + q L τ − q R ¯ q L τ − q R ¯ 𝛒 - t=N t - t i O 0�� � ⇤ ⇥ � � ⇤ ⇥ � q R τ � q L q R τ � q L q L τ � q R q L τ � q R 2+ = ¯ ¯ + ¯ ¯ q L τ − γ µ q L q R τ − γ µ q R � � ⇥ ⇤ � � ⇥ ⇤ O −− 3+ = ¯ q L τ − γ µ q L ¯ + ¯ q R τ − γ µ q R ¯

  36. 16 3 × 48 , m π L ∼ 3 . 78 24 3 × 48 , m π L ∼ 3 . 99 32 3 × 48 , m π L ∼ 3 . 25 24 3 × 64 , m π L ∼ 3 . 22 24 3 × 64 , m π L ∼ 4 . 54 32 3 × 64 , m π L ∼ 4 . 29 48 3 × 64 , m π L ∼ 3 . 91 40 3 × 64 , m π L ∼ 5 . 36 32 3 × 96 , m π L ∼ 4 . 50 48 3 × 96 , m π L ∼ 4 . 73 • Möbius DWF on HISQ • Gradient flow method for smearing configs • m res < 0.1 m l for moderate L 5 • Wall + point sources for pions • ~ 1000 cfgs, 1 source/cfg MILC Collaboration Phys. Rev. D87 (2013) 054505 Narayanan, Neuberger (2006), Luscher (2010) K. Orginos, C. Monahan (private communication)

  37. Signals - 0.05 - 0.10 - 0.15 O' 2 + - 0.20 Wall - 0.25 0.8 Point - 0.30 0.7 - 0.35 0 5 10 15 20 0.6 t f O 2 + 0.5 • m 𝜌 ~ 135 MeV 0.4 • L = 5.76 fm 0.3 10 15 20 • a = 0.12 fm t f

  38. Preliminary! O 2+ , O 0 2+ O 1+ , O 0 0.8 1+ O 3+ 0.6 0.4 O i + 0.2 0.0 - 0.2 5 10 15 20 t f

  39. Preliminary! 0.004 0.002 O 2+ , O 0 2+ O 1+ , O 0 0.000 0.8 1+ O 3+ O 3 + - 0.002 - 0.004 0.6 - 0.006 - 0.008 0.4 5 10 15 20 t f O i + 0.2 0.0 - 0.2 5 10 15 20 t f

  40. Preliminary! O 2+ , O 0 1.0 2+ O 1+ , O 0 1+ O 3+ 0.8 Ê Ê Ê 0.6 Ê Ê Ê 0.4 O i + Ê Ê 0.2 Ê 0.0 Ê Ê Ê Ê Ê Ê - 0.2 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 m p L

  41. Preliminary! 0.000 - 0.002 O 2+ , O 0 1.0 2+ - 0.004 O 1+ , O 0 1+ O 3+ - 0.006 Ê O 3 + 0.8 Ê Ê Ê - 0.008 Ê Ê - 0.010 0.6 Ê - 0.012 Ê Ê - 0.014 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 m p H MeV L 0.4 O i + Ê Ê 0.2 Ê 0.0 Ê Ê Ê Ê Ê Ê - 0.2 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 m p L

  42. Preliminary! O 2+ , O 0 1.2 2+ O 1+ , O 0 1+ O 3+ 1.0 Ê Ù ‡ Ù 0.8 ‡ Ê ‡ ‡ ‡ Ê 0.6 Ê Ê Ê Ù Ù O i + 0.4 Ê Ù ‡ Ù 0.2 Ê ‡ Ê 0.0 ‡ Ê Ù Ê ‡ Ù Ê ‡ Ù Ù Ê Ê Ê ‡ - 0.2 ‡ ‡ 100 150 200 250 300 350 m p H MeV L

Recommend


More recommend