neutrino mass ordering hints and challenges
play

Neutrino Mass Ordering: Hints and Challenges Eligio Lisi (INFN, - PowerPoint PPT Presentation

Neutrino Mass Ordering: Hints and Challenges Eligio Lisi (INFN, Bari, Italy) Solvay Workshop, Brussels, 2017 Ren Magri+e, Voice of Space (1931) 2 OUTLINE: Prologue: 3 knowns and unknowns Global 3 oscillaFon analysis and


  1. Neutrino Mass Ordering: Hints and Challenges Eligio Lisi (INFN, Bari, Italy) Solvay ν Workshop, Brussels, 2017 ß René Magri+e, Voice of Space (1931)

  2. 2 OUTLINE: • Prologue: 3 ν knowns and unknowns • Global 3 ν oscillaFon analysis and mass ordering • CombinaFon with nonoscillaFon constraints • Future challenges • Epilogue Mainly based on: F. Capozzi, E. Di ValenFno, E. Lisi, A. Marrone, A. Melchiorri, A. Palazzo, “Global constraints on absolute neutrino masses and their ordering” arXiv:1703.04471 [PRD 95, 096014 (2017)] For independent analyses, see also Esteban+ 1611.01514; de Salas+ 1708.01186

  3. Prologue: 3 ν paradigm - parameters 3 Mixings and phases: CKM à PMNS (Pontecorvo-Maki-Nakagawa-Sakata) s 13 e − i δ         1 0 0 1 0 0 c 13 0 c 12 s 12 0 e i α / 2 U α i = 0 c 23 s 23 0 1 0 − s 12 c 12 0 0 0         − s 13 e i δ e i β / 2 − s 23 c 23 c 13 0 0 0 0 1 0 0 2-3 rotation 1-2 rotation Extra CPV phases 1-3 rotation [if Majorana] + + CPV PV “D “Dira rac” c” phase se not tested in oscillat. Mass [squared] spectrum (E ~ p + m 2 /2E + “interaction energy” ) 2 2 3 3 δ m 2 1 1 “Norma “N rmal” ” “I “Inve vert rted” ” Δ m 2 Ord rderi ring Ord rderi ring Δ m 2 NO NO IO IO 2 2 δ m 2 3 3 1 1 . . E E . densi + + intera ract ctions s in ma matter r à effect ctive ve terms rms ~ ~ G F sity y F + + abso solute ma mass ss sca scale (n (not test sted in osci scillations) s)

  4. 4 ν flavor oscillation experiments: α à β in vacuum and matter e à e (KamLAND), µ à µ (Atmospheric) ( Δ m 2 , θ 23 23 ) e à e (SBL Reac.) θ 12 ) c a e θ 12 e à e (Solar) θ 12 12 ) µ à µ (LBL Accel) Δ m 2 , θ 23 µ à e (LBL Accel) θ 23 ) f b d (OPER (OPERA, SK , SK) θ µ à τ g Data from various types of neutrino experiments: (a) solar, (b) long-baseline reactor, (c) atmospheric, (d) long-baseline accelerator, (e) short-baseline reactor, (f,g) long baseline accelerator (and, in part, atmospheric). (a) KamLAND [plot]; (b) Borexino [plot], Homestake, Super-K, SAGE, GALLEX/GNO, SNO; (c) Super-K atmosph. [plot], DeepCore, MACRO, MINOS etc.; (d) T2K (plot), MINOS, K2K; (e) Daya Bay [plot], RENO, Double Chooz; (f) T2K [plot], MINOS, NOvA; (g) OPERA [plot], Super-K atmospheric.

  5. 5 Leading sensitivities to 3 ν oscillation parameters: e à e ( δ m 2 , θ 12 12 ) µ à µ ( Δ m 2 , θ 23 23 ) e à e ( Δ m 2 , θ 13 13 ) c a e à e ( δ m 2 , θ 12 12 ) µ à µ ( Δ m 2 , θ 23 23 ) µ à e ( Δ m 2 , θ 13 13 , θ 23 23 ) f b d µ à τ ( Δ m 2 , θ 23 23 ) g Data from various types of neutrino experiments: (a) solar, (b) long-baseline reactor, (c) atmospheric, (d) long-baseline accelerator, (e) short-baseline reactor, (f,g) long baseline accelerator (and, in part, atmospheric). (a) KamLAND [plot]; (b) Borexino [plot], Homestake, Super-K, SAGE, GALLEX/GNO, SNO; (c) Super-K atmosph. [plot], DeepCore, MACRO, MINOS etc.; (d) T2K (plot), MINOS, K2K; (e) Daya Bay [plot], RENO, Double Chooz; (f) T2K [plot], MINOS, NOvA; (g) OPERA [plot], Super-K atmospheric.

  6. 6 “Broad-brush” 3 ν picture (with 1-digit accuracy) Knowns: Unknowns: δ m 2 ~ 7 x 10 -5 eV 2 δ = Dirac CPV phase Δ m 2 ~ 2 x 10 -3 eV 2 sign( Δ m 2 ) = ordering sin 2 θ 12 ~ 0.3 “octant” of θ 23 sin 2 θ 23 ~ 0.5 absolute mass scale sin 2 θ 13 ~ 0.02 Dirac/Majorana nature e µ τ Normal Ordering (NO) Inverted Ordering (IO) ν 3 + Δ m 2 ν 2 δ m 2 m 2 ν ν 1 - Δ m 2 ν 3

  7. 7 Hi-res and larger picture à Global analysis of ν oscill. data Analysis includes increasingly rich oscillation data sets: LBL Acc + Solar + KL LBL Acc + Solar + KL + SBL Reactor LBL Acc + Solar + KL + SBL Reactor + Atmosph. χ 2 metric adopted. Parameters not shown are marginalized away: C.L.’s refer to N σ = = √ Δχ Δχ 2 = 1, 2, 3, ... Global fit results taken from 1703.04471 . Note: KL=KamLAND.

  8. 8 Five known oscillation parameters: LBL Acc + Solar + KamLAND + SBL Reactors + Atmos Current 1 σ errors 4 4 4 4 NO ( 1/6 of ±3 σ range ): IO 3 3 3 3 Note: Δ m 2 = ( Δ m 2 31 + Δ m 2 32 )/2 δ m 2 2.3 % σ 2 2 2 2 N Δ m 2 1.6 % LBL Acc + Solar + KamLAND + SBL Reactors + Atmos sin 2 θ 12 5.8 % 4 12 1 1 1 1 sin 2 θ 13 4.0 % NO 13 sin 2 θ 23 ~ 9 % IO 23 3 0 0 0 0 6.5 7 7.5 8 8.5 2 2.2 2.4 2.6 2.8 0 0.5 1 1.5 2 -5 -3 2 2 2 2 / m /10 eV m /10 eV δ π δ ∆ 2 N all < 10%... 4 4 4 4 2 - 3 digits needed 1 3 3 3 3 à Precision Era! 0 σ 2 6.5 7 7.5 8 8.5 2 2.2 2.4 2.6 2.8 0 0.5 1 1.5 2 2 2 2 N -5 -3 [but: PMNS still very far 2 2 2 2 / m /10 eV m /10 eV from CKM accuracy] 4 1 1 1 1 à novel expt+theo 3 0 challenges (fluxes, 0 0 0 0.25 0.3 0.35 0.01 0.02 0.03 0.3 0.4 0.5 0.6 0.7 2 2 2 sin sin sin cross sections, ...) θ θ θ 12 13 23 2 N in nuclear physics 1 0 0.25 0.3 0.35 0.01 0.02 0.03 0.3 0.4 0.5 0.6 0.7 2 2 2 sin sin sin 12 13 23

  9. 9 Three unknown oscillation parameters LBL Acc + Solar + KamLAND + SBL Reactors + Atmos 4 4 NO IO 3 3 δ CP 2 2 N 1 1 0 0 6.5 7 7.5 8 8.5 2 2.2 2.4 2.6 2.8 0 0.5 1 1.5 2 -5 -3 2 2 2 2 / m /10 eV m /10 eV δ π 4 4 θ 23 octant 3 3 2 2 N 1 1 0 0 0.25 0.3 0.35 0.01 0.02 0.03 0.3 0.4 0.5 0.6 0.7 NO or IO 2 2 2 sin sin sin θ 12 13 23

  10. 10 More on unknown oscillation parameters: LBL Acc + Solar + KamLAND + SBL Reactors + Atmos LBL Acc + Solar + KamLAND LBL+Sol+KL 4 4 4 NO NH IO IH 3 3 3 σ N 2 δ CP 2 2 N 1 1 1 0 6.5 0 0 0.5 1 1.5 2 0 δ π ∆ δ 6.5 7 7.5 8 8.5 2 2.2 2.4 2.6 2.8 0 0.5 1 1.5 2 / δ π 2 -5 2 2 -3 2 / m /10 eV m /10 eV 4 4 4 θ 23 3 3 3 σ octant σ N 2 2 2 N 1 1 1 θ θ 0 θ 0 6.5 0.03 0.3 0.4 0.5 0.6 0.7 0 2 sin θ δ π ∆ 0.25 0.3 0.35 0.01 0.02 0.03 0.3 0.4 0.5 0.6 0.7 δ 23 2 2 2 sin sin sin 12 13 23 Δχ 2 2 +1.1 (IO-NO) σ θ θ θ

  11. 11 More on unknown oscillation parameters: LBL Acc + Solar + KamLAND + SBL Reactors + Atmos LBL Acc + Solar + KamLAND + SBL Reactors + Atmos +SBL Reac LBL Acc + Solar + KamLAND LBL Acc + Solar + KamLAND + SBL Reactors LBL+Sol+KL 4 4 4 4 4 NO NO NH NH IO IO IH IH 3 3 3 3 3 σ N 2 δ CP 2 2 2 2 N N 1 1 1 1 1 0 6.5 0 0 0 0.5 1 1.5 2 2.8 0 0.5 1 1.5 2 0 0 δ π ∆ δ 6.5 7 7.5 8 8.5 2 2.2 6.5 2.4 7 2.6 7.5 2.8 8 0 8.5 0.5 2 1 2.2 1.5 2.4 2 2.6 2.8 0 0.5 1 1.5 2 / / δ π δ π 2 -5 2 2 -3 2 2 -5 2 2 -3 2 / / m /10 eV m /10 m eV /10 eV m /10 eV / δ π 4 4 4 4 4 θ 23 3 3 3 3 3 σ octant σ N 2 2 2 2 2 N N 1 1 1 1 1 θ θ 0 θ 0 0 6.5 0.03 0.3 0.4 0.5 0.6 0.7 0.03 0.3 0.4 0.5 0.6 0.7 0 0 2 2 sin θ sin δ π θ ∆ 0.25 0.3 0.35 0.01 0.25 0.02 0.3 0.03 0.35 0.3 0.4 0.01 0.5 0.6 0.02 0.7 0.03 0.3 0.4 0.5 0.6 0.7 δ 23 23 2 2 2 2 2 2 sin sin sin sin sin sin 12 13 12 23 13 23 Δχ 2 2 +1.1 +1.1 (IO-NO) σ θ θ θ

  12. 12 More on unknown oscillation parameters: LBL Acc + Solar + KamLAND + SBL Reactors + Atmos LBL Acc + Solar + KamLAND + SBL Reactors + Atmos LBL Acc + Solar + KamLAND + SBL Reactors + Atmos +SBL Reac +Atmos LBL Acc + Solar + KamLAND LBL Acc + Solar + KamLAND + SBL Reactors LBL+Sol+KL LBL Acc + Solar + KamLAND + SBL Reactors + Atmos 4 4 4 4 4 4 4 NO NO NO NH NH 4 sin δ ~ -1 NO IO IO IO IH IH 3 3 3 3 3 3 3 IO (or sin δ < 0) 3 σ favored; N 2 δ CP 2 2 2 2 N 2 2 N N 2 sin δ ~ +1 N 1 1 excluded 1 1 1 1 1 1 0 0 6.5 0 0 0 6.5 7 7.5 8 8.5 2 2.2 2.4 2.6 2.8 0 0.5 1 1.5 2 0 0.5 1 1.5 2 2.8 0 0.5 1 1.5 2 0 0 0 δ π ∆ δ 2 -5 2 2 -3 2 6.5 7 7.5 8 8.5 2 2.2 6.5 2.4 7 2.6 7.5 2.8 8 0 8.5 0.5 2 1 2.2 1.5 2.4 2 2.6 2.8 0 0.5 1 1.5 2 / m /10 eV m /10 eV / 6.5 7 7.5 8 8.5 2 / 2.2 2.4 2.6 2.8 0 0.5 1 1.5 2 δ π δ π δ π 2 -5 2 2 -3 2 2 -5 2 2 -3 2 / 2 -5 2 / 2 -3 2 m /10 eV m /10 m eV /10 eV m /10 eV / m /10 eV / m /10 eV δ π 4 4 4 4 4 4 4 4 Max-mixing 3 θ 23 3 3 3 3 3 3 disfavored; 3 σ 2 octant octant flips N σ N 2 2 2 2 N 2 2 2 with NO/IO N N 1 1 1 1 1 1 1 1 0 0.25 0.3 0.35 0.01 0.02 0.03 0.3 0.4 0.5 0.6 0.7 θ θ 0 θ 0 0 2 2 2 0 0 sin sin sin 6.5 0.25 0.3 0.35 0.01 0.02 0.03 0.3 0.4 0.5 0.6 0.7 0.03 0.3 0.4 0.5 0.6 0.7 0.03 0.3 0.4 0.5 0.6 0.7 12 13 23 0 0 2 2 2 2 2 sin sin sin sin θ sin δ π θ θ ∆ 0.25 0.3 0.35 0.01 0.25 0.02 0.3 0.03 0.35 0.3 0.4 0.01 0.5 0.6 0.02 0.7 0.03 0.3 0.4 0.5 0.6 0.7 δ 12 13 23 23 23 2 2 2 2 2 2 sin sin sin sin sin sin 12 13 12 23 13 23 Δχ 2 2 Intriguing! +1.1 +1.1 +3.6 NO favored (IO-NO) σ θ θ θ

Recommend


More recommend