neutrino induced production of radioisotopes
play

Neutrino-induced production of radioisotopes in Core-Collapse - PowerPoint PPT Presentation

Neutrino-induced production of radioisotopes in Core-Collapse Supernovae A. Sieverding 1 , L. Huther 1 , G. Mart nez-Pinedo 1 , K. Langanke 1 , 2 ,A. Heger 3 1 Technische Universit at Darmstadt 2 GSI Helmholtzzentrum, Darmstadt 3 Monash


  1. Neutrino-induced production of radioisotopes in Core-Collapse Supernovae A. Sieverding 1 , L. Huther 1 , G. Mart´ ınez-Pinedo 1 , K. Langanke 1 , 2 ,A. Heger 3 1 Technische Universit¨ at Darmstadt 2 GSI Helmholtzzentrum, Darmstadt 3 Monash Centre for Astrophysics, Melbourne MICRA 2015, Stockholm, 18th August Neutrino Nucleosynthesis A. Sieverding, L. Huther, G. Mart´ ınez-Pinedo, A. Heger MICRA 2015

  2. Outline Introduction 1 The ν -process Results with updated physics 2 Production of 7 Li, 11 B, 19 F, 138 La, 180 Ta Radioactive nuclei relevant for γ -ray astronomy Radioisotopes in meteorites Summary and Outlook 3 Neutrino Nucleosynthesis A. Sieverding, L. Huther, G. Mart´ ınez-Pinedo, A. Heger MICRA 2015

  3. Core-Collapse Supernovae Collapse-Collapse after hydrostatic burning turns into an explosion Hydrodynamic shock triggers explosive nucleosynthesis and ejection of material Cooling core emitts neutrinos Neutrinos influence the nucleosynthesis in outer layers of SNe (Not to scale) from Wikimedia commons Neutrino Nucleosynthesis A. Sieverding, L. Huther, G. Mart´ ınez-Pinedo, A. Heger MICRA 2015

  4. Core-Collapse Supernovae Collapse-Collapse after hydrostatic burning turns into an explosion Hydrodynamic shock triggers explosive nucleosynthesis and ejection of material Cooling core emitts neutrinos Neutrinos influence the nucleosynthesis in outer layers of SNe Impact on the composition of the ejecta (Not to scale) Production of rare isotopes from Wikimedia commons Neutrino Nucleosynthesis A. Sieverding, L. Huther, G. Mart´ ınez-Pinedo, A. Heger MICRA 2015

  5. Neutrino nucleosynthesis Emission of 10 58 Neutrinos Charged-current (CC) e + ,e - from the collapsing core γ � E ν � ≈ 8 − 13 MeV ν e, ν e p B * A � E ν e � < � E ¯ ν e � ≤ � E ν µ,τ � n α Relevant processes Neutral-current (NC) 1 Inverse β -decay ν x ' γ 2 Particle emission ν x p A * A 3 Capture of spallation n products α Neutrino Nucleosynthesis A. Sieverding, L. Huther, G. Mart´ ınez-Pinedo, A. Heger MICRA 2015

  6. Neutrino nucleosynthesis The supernova shock leads to high temperatures and densities Photodissociation and particle capture reactions dominate explosive nucleosynthesis ν -process affects regions with sufficient neutrino fluxes and moderate post-shock temperatures O/Ne-,C/O- and lower He-layers Neutrino Nucleosynthesis A. Sieverding, L. Huther, G. Mart´ ınez-Pinedo, A. Heger MICRA 2015

  7. Neutrino nucleosynthesis The supernova shock leads to high temperatures and densities Photodissociation and particle capture reactions dominate explosive nucleosynthesis ν -process affects regions with sufficient neutrino fluxes and moderate post-shock temperatures O/Ne-,C/O- and lower He-layers Main examples for the ν process: 7 Li and 11 B via 4 He( ν x , ν ′ x p/n) and 12 C( ν x , ν ′ x p) ... 19 F via 20 Ne( ν x , ν ′ x p/n) 138 La and 180 Ta via 138 Ba( ν e ,e − ) and 180 Hf( ν e ,e − ) Neutrino Nucleosynthesis A. Sieverding, L. Huther, G. Mart´ ınez-Pinedo, A. Heger MICRA 2015

  8. Neutrino Spectra from state-of-the art SN simulations Detailed descriptions of neutrino transport are included More channels for neutrino-matter Fischer et al. (2014) interactions Ineslastic channels reduce the average energies Janka et al. (2012) Neutrino Nucleosynthesis A. Sieverding, L. Huther, G. Mart´ ınez-Pinedo, A. Heger MICRA 2015

  9. Updated physics input Simulations including detailed neutrino transport give new estimates for typical neutrino energies: � E ν � =8-13 MeV compared to 13-25 MeV Neutrino-nucleus cross-sections have been calculated for almost the whole nuclear chart (L. Huther 2014, PhD. Thesis) Parametric description of thermodynamic and neutrino-flux quantities (Woosley et al. 1990) Neutrino Nucleosynthesis A. Sieverding, L. Huther, G. Mart´ ınez-Pinedo, A. Heger MICRA 2015

  10. Parametrization of the Supernova explosion Parametrization of temperature and density evolution during the explosion (Woosley et al. 1990) � E expl � 1 / 4 � − 3 / 4 T Peak = 2 . 4 × 10 9 K × R � × 10 51 erg 10 9 cm Neutrino flux Exponentially decreasing neutrino luminosity Thermal Fermi-Dirac spectrum Woosley et al. 2002 Neutrino Nucleosynthesis A. Sieverding, L. Huther, G. Mart´ ınez-Pinedo, A. Heger MICRA 2015

  11. Outline Introduction 1 The ν -process Results with updated physics 2 Production of 7 Li, 11 B, 19 F, 138 La, 180 Ta Radioactive nuclei relevant for γ -ray astronomy Radioisotopes in meteorites Summary and Outlook 3 Neutrino Nucleosynthesis A. Sieverding, L. Huther, G. Mart´ ınez-Pinedo, A. Heger MICRA 2015

  12. Evaluation of CCSNe nucleosynthesis calculations The solar abundances provide oberservational infomation for nucleosynthesis results to compare with Production factor P A = X A X ⊙ A Assuming that CCSNe are the main source of solar 16 O : P A P A , normalized = P 16O Neutrino Nucleosynthesis A. Sieverding, L. Huther, G. Mart´ ınez-Pinedo, A. Heger MICRA 2015

  13. Evaluation of CCSNe nucleosynthesis calculations The solar abundances provide oberservational infomation for nucleosynthesis results to compare with Production factor P A = X A X ⊙ A Assuming that CCSNe are the main source of solar 16 O : P A P A , normalized = P 16O P A , normalized ∼ 1 indicates CCSNe as possible production site P A , normalized ≪ 1 hints another production site or mechanism Neutrino Nucleosynthesis A. Sieverding, L. Huther, G. Mart´ ınez-Pinedo, A. Heger MICRA 2015

  14. Production factors normalized to 16 O 25 M ⊙ progenitor with solar metallicity (Heger et al. 2002) Nucleus no ν present work Heger et al. (2005) 7 Li 10 − 4 0.11 - 11 B 0.003 0.8 1.18 19 F 0.06 0.24 0.32 138 La 0.03 0.63 0.90 180 Ta 0.14 1.80 4.24 present work: � E ν e � = 8 . 8 MeV, � E ¯ ν e ,ν x � = 12 . 6 MeV Heger et al.: � E ν e , ¯ ν e � = 12 . 6 MeV, � E ν x � = 18 . 9 MeV Neutrino Nucleosynthesis A. Sieverding, L. Huther, G. Mart´ ınez-Pinedo, A. Heger MICRA 2015

  15. Outline Introduction 1 The ν -process Results with updated physics 2 Production of 7 Li, 11 B, 19 F, 138 La, 180 Ta Radioactive nuclei relevant for γ -ray astronomy Radioisotopes in meteorites Summary and Outlook 3 Neutrino Nucleosynthesis A. Sieverding, L. Huther, G. Mart´ ınez-Pinedo, A. Heger MICRA 2015

  16. γ -ray astronomy Isotope Decaytime Decay8Chain γ γ γ γ TRay8Energy82keV3 7 Be 8 778d 478 7 Be8 → → → 7 Li9 → 56 Ni MMM8d 847.8M238 56 Ni8 → → → → 56 Co98 → → → 56 Fe90e 0 → 57 Ni 39l8d 57 Co → → 57 Fe9 M22 → → 22 Na 3S88y 22 Na8 → → → → 22 Ne9808e 0 M275 44 Ti 898y 44 Ti → → → → 44 Sc9 → → → → 44 Ca90e 0 MM57.878.868 26 Al MSl48Ml 6 y 26 Al8 → → → → 26 Mg9808e 0 M8l9 6l Fe 2Sl8Ml 6 y 6l Fe8 → → → → 6l Co9 MM73.8M332 Neutrino Nucleosynthesis A. Sieverding, L. Huther, G. Mart´ ınez-Pinedo, A. Heger MICRA 2015

  17. γ -ray astronomy Isotope Decaytime Decay8Chain γ γ γ γ TRay8Energy82keV3 7 Be 8 778d 478 7 Be8 → → → 7 Li9 → 56 Ni MMM8d 847.8M238 56 Ni8 → → → → 56 Co98 → → → 56 Fe90e 0 → 57 Ni 39l8d 57 Co → → 57 Fe9 M22 → → 22 Na 3S88y 22 Na8 → → → → 22 Ne9808e 0 M275 44 Ti 898y 44 Ti → → → → 44 Sc9 → → → → 44 Ca90e 0 MM57.878.868 26 Al MSl48Ml 6 y 26 Al8 → → → → 26 Mg9808e 0 M8l9 6l Fe 2Sl8Ml 6 y 6l Fe8 → → → → 6l Co9 MM73.8M332 Neutrino Nucleosynthesis A. Sieverding, L. Huther, G. Mart´ ınez-Pinedo, A. Heger MICRA 2015

  18. 22 Na and 26 Al for a set of progenitor models 26 Al, without ν 's 22 Na without ν 's 26 Al, including ν 's 22 Na, including ν 's 10 -4 10 -5 Yield/M ⊙ 10 -6 10 -7 15 20 25 30 35 40 Progenitor initial mass/M ⊙ 26 Al yields are modified by factors beween 1.4 and 2.2 22 Na increased by factors up to 2.9 Neutrino Nucleosynthesis A. Sieverding, L. Huther, G. Mart´ ınez-Pinedo, A. Heger MICRA 2015

  19. Production channels for 26 Al 28 Si ( ν , ν ' np ) ( ν , ν ' n ) 26 Al 27 Al ( ν e , e - (p, γ ) ) Bouchet et al. (2015) Different mechanisms: 26 Mg 25 Mg ◮ enhancement of p-captures ◮ charged-current channel ◮ neutral-current channels Neutrino Nucleosynthesis A. Sieverding, L. Huther, G. Mart´ ınez-Pinedo, A. Heger MICRA 2015

  20. a) 26 Al 15 M ⊙ star Production of 26 Al for a 15 M ⊙ progenitor no ν all reactions enriched 10 -4 Mass fraction Si-shell O/Ne-shell C/O-shell in 18 O 10 -5 10 -6 1.5 2.0 2.5 3.0 Interior mass ( M ⊙ ) Neutrino Nucleosynthesis A. Sieverding, L. Huther, G. Mart´ ınez-Pinedo, A. Heger MICRA 2015

  21. a) 26 Al 15 M ⊙ star Production of 26 Al for a 15 M ⊙ progenitor no ν CC only all reactions NC only enriched 10 -4 Mass fraction Si-shell O/Ne-shell C/O-shell in 18 O 10 -5 10 -6 1.5 2.0 2.5 3.0 Interior mass ( M ⊙ ) Neutrino Nucleosynthesis A. Sieverding, L. Huther, G. Mart´ ınez-Pinedo, A. Heger MICRA 2015

  22. Production of 26 Al for a 15 M ⊙ progenitor no ν CC only all reactions NC only 10 -4 Si-shell O/Ne-shell C/O-shell 7 Mass fraction 6 10 -5 Mass fraction/ 10 − 5 5 4 3 10 -6 1.5 2.0 2.5 3.0 2 2.26 2.28 2.30 2.32 2.34 Interior mass ( M ) Interior mass ( M ) Neutrino Nucleosynthesis A. Sieverding, L. Huther, G. Mart´ ınez-Pinedo, A. Heger MICRA 2015

Recommend


More recommend