neutral current weak form factors neutrino scattering
play

Neutral Current Weak Form Factors & Neutrino Scattering Raza - PowerPoint PPT Presentation

Neutral Current Weak Form Factors & Neutrino Scattering Raza Sabbir Sufian USQCD All Hands Meeting 2018 Neutrino-Nucleon Neutral Current Elastic Scattering ( q 1 , 1 ) ( q 2 , 2 ) + p + p Z 0 ( q ) + p +


  1. Neutral Current Weak Form Factors & Neutrino Scattering Raza Sabbir Sufian USQCD All Hands’ Meeting 2018

  2. Neutrino-Nucleon Neutral Current Elastic Scattering ν ( q 1 , σ 1 ) ν ( q 2 , σ 2 ) ν + p ν + p → Z 0 ( q ) ν + p ¯ ν + p, ¯ → N ( p 1 , κ 1 ) N ( p 2 , κ 2 ) Matrix element in V-A structure of leptonic current i h N ( p 2 ) | J µ p M = 2 G F ¯ ν ( q 2 ) γ µ (1 � γ 5 ) ν ( q 1 ) Z | N ( p 1 ) i . 2 | {z } | {z } leptonic current hadronic current 2 ( Q 2 ) i σ µ ν q ν h N ( p 2 ) | J µ u ( p 2 )[ F Z 1 ( Q 2 ) + F Z + F Z A ( Q 2 ) γ µ γ 5 ] u ( p 1 ) Z | N ( p 1 ) i = ¯ 2 M N

  3. (Anti)Neutrino-Nucleon Scattering Differential Cross Section dQ 2 � G 2 Q 2 d � F � A � BW � CW 2 � ; E 2 2 � � W � 4 � E � =M p � � � ; 1 � 2 � � � F Z 4 f � G Z A � 2 � 1 � � ���� F Z 2 � 2 �� 1 � � �� 4 � F Z 1 F Z A � 1 2 g ; C � 1 4 G Z A � F Z 1 � F Z B � � 1 A � 2 � � F Z 1 � 2 � � � F Z 2 � ; 64 � �� G Z 2 � 2 � : Neutral Weak Dirac & Pauli Weak axial FF FFs

  4. Calculation of F 1Z and F 2Z 1 , 2 ) � F s ✓ 1 ◆ 2 � sin 2 θ W 1 , 2 ( Q 2 )) � sin 2 θ W ( F p 1 , 2 F Z,p ( F p 1 , 2 ( Q 2 ) � F n 1 , 2 + F n 1 , 2 = 2 Nucleon EMFF from Strange EMFF from Model Independent Lattice QCD z-expansion PRL 118, 042001 (2017) RSS, Yang, Alexandru, Draper, Liang, Liu PL B 777 (2018) 8-15 Ye, Arrington, Hill, Lee Physical point 4 lattice spacings 3 volumes

  5. Inputs for Previous Neutral Weak EMFFs Nucleon EMFF (total) Strange EMFF PRD 95, 014011(2017) RSS, de Teramond, Brodsky, Dosch, Deur PRL 2018 de Teramond, Liu, RSS, Brodsky, Dosch, Deur

  6. Calculation of Neutral Weak EMFFs E,M ( Q 2 ) = 1  Radiative corrections (1 − 4 sin 2 ✓ W )(1+ R p ( n ) G Z,p ( n ) ) G γ ,p ( n ) E,M ( Q 2 ) V 4 for e-p scattering � − (1+ R n ( p ) ) G γ ,n ( p ) E,M ( Q 2 ) − G s E,M ( Q 2 ) V ffiffiffi PRD 96, 093007 (2017) RSS

  7. Determination of Neutral Current Weak Axial FF *Use MiniBooNE data (0.27 < Q 2 < 0.65 GeV 2 ) Reason 1: Uncertainty in G sE,M becomes very large and values consistent with zero Reason 2: Nuclear effect can be large for at low Q 2 C ~ 1 [ ]

  8. Determination of Neutral Current Weak Axial FF d σ dQ 2 From MiniBooNE Experiment 1 , 2 ) } )( F p From Experiment 1 , 2 � − F n From Lattice QCD − F s 1 , 2 G ZA (0) = - 0.751 (56) M dipole = 0.95(6) GeV In preparation with Keh-Fei Liu & David Richards

  9. Impact of Lattice QCD Strange EMFF Possibility: Since strange quark contribution is small set =0 (0) ) G s (??) E,M ( Discrepancy !! X =0 (0) ) G s E,M ( X

  10. Reconstruction of Differential Cross Sections Nuclear effects Pauli blocking & nuclear shadowing at Q 2 < 0.15 GeV 2 BNL E734 data was NOT used in the analysis

  11. Estimate of G sA (0) This Calculation Other Calculations G Z A � G s A � 1 2 �� G CC MiniBooNE, PRD 82 (2010) G s A � ; A (0) = 0 . 08(26) A (0) = - 0.21(10 ) G s BNL E734, PRC 48 (1993) G Z A (0) = − 0 . 751(56) 0 . 00 − 0 . 02 G CC A (0) = 1 . 2723(23) − 0 . 04 − 0 . 06 − 0 . 08 QCDSF A Engelhardt g s − 0 . 10 ETMC G s = - 0.23(11) A (0) CSSM and QCDSF/UKQCD − 0 . 12 LHPC χ QCD − 0 . 14 Phenomenology (JAM15) Phenomenology (JAM17) − 0 . 16 Phenomenology (NNPDFpol1.1) − 0 . 18 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 m π (GeV) From Jeremy Green’s Talk

  12. Summary Precise estimate of NC weak axial form factor G ZA Strange quark contribution cannot be ignored Reconstruction of (anti)neutrino- nucleon diff. cross sections with correct prediction of G ZA and lattice input of G sE,M Lattice QCD calculation of G sA in the continuum and infinite volume limit with controlled systematic uncertainties required

  13. An Example: LQCD Constraint on Models Many models of meson-baryon fluctuations to study s(x)-s(x) asymmetry In Preparation

  14. Pate, et al EPJ Web Conf. 66 (2014) 06018 [13] S.F. Pate, Phys. Rev. Lett. 92 , 082002 (2004), 0 0.2 0.4 0.6 0.8 1 0.5 0.5 [14] D. Armstrong, R. McKeown, Ann.Rev.Nucl.P Two solutions for the strange form factors at Q 2 � 0 0 TABLE II. 0 : 5 GeV 2 produced from the E734 and HAPPEX data. -0.5 -0.5 s G -1 -1 A Solution 1 Solution 2 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 G s 0 : 02 � 0 : 09 0 : 37 � 0 : 04 0.4 0.4 E G s 0 : 00 � 0 : 21 � 0 : 87 � 0 : 11 0.2 0.2 M G s � 0 : 09 � 0 : 05 0 : 28 � 0 : 10 0 0 A s G -0.2 -0.2 M 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0.2 0.2 Q 2 = 0.5 GeV 2 0 0 s G -0.2 -0.2 E 0 0.2 0.4 0.6 0.8 1 2 2 Q (GeV )

  15. Weak Axial FF form e-p scattering PV = − G F Q 2 1 A p √ E ) 2 + τ ( G p [ � ( G p M ) 2 ] 4 2 πα 0.5 E ) 2 + τ ( G p M ) 2 )(1 − 4 sin 2 θ W )(1 + R p G e,(T =1) × { ( � ( G p V ) 0 A − ( � G p E + τ G p E G n M G n M )(1 + R n V ) -0.5 M )(1 + R (0) − ( � G p E + τ G p E G s M G s V ) -1 − � ′ (1 − 4sin 2 θ W ) G p M G e A } , (2 SAMPLE -1.5 G0 A4 with -2 Zhu et al. -2.5 � − 1 τ = Q 2 � 1 + 2(1 + τ )tan 2 θ � = , , 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 4 M 2 2 Q 2 (Ge 2 ) V/ c p � ′ = � τ (1 + τ )(1 − � 2 ) , R (0) R T =1 R T =0 A A A one-quark − 0 . 172 − 0 . 253 − 0 . 551 many-quark − 0 . 086(0 . 34) 0.014(0.19) N/A total − 0 . 258(0 . 34) − 0 . 239(0 . 20) − 0 . 55(0 . 55)

  16. ν µ + n → µ − + p ν µ + p → µ + + n , ¯ , ν e + n → e − + p ν e + p → e + + n . ¯ , Particle Lifetime (ns) Decay mode Branching ratio (%) µ + + ν µ π + 26.03 99.9877 e + + ν e 0.0123 µ + + ν µ K + 12.385 63.44 π 0 + e + + ν e 4.98 π 0 + µ + + ν µ 3.32 π − + e + + ν e K 0 51.6 20.333 L π + + e − + ν e 20.197 π − + µ + + ν µ 13.551 π + + µ − + ν µ 13.469 e + + ν e + ν µ µ + 2197.03 100.0

  17. 9

Recommend


More recommend