Nested Bethe ansatz for orthogonal and symplectic open spin chains Allan Gerrard in collaboration with Vidas Regelskis and Curtis Wendlandt University of York RAQIS 2018, 10th September 2018 1/19
Historical timeline gl 2 closed chain (ABA) - Faddeev–Sklyanin–Takhtadjan’79 gl N closed chain (NBA) - Kulish–Reshetikhin’81 sp 2 n closed chain (NBA) - Reshetikhin’85 so 2 n closed chain (NBA) - de Vega–Karowski’87 gl 2 open chain (ABA) - Sklyanin’88 gl N open chain (NBA) - Martin–Galleas’04; Belliard–Ragoucy’09 osp M | 2 n open chain (Analytical BA) - Doikou et. al.’03 so 2 n open chain (NBA) - Gombor–Palla’16 2/19
Historical timeline gl 2 closed chain (ABA) - Faddeev–Sklyanin–Takhtadjan’79 gl N closed chain (NBA) - Kulish–Reshetikhin’81 sp 2 n closed chain (NBA) - Reshetikhin’85 so 2 n closed chain (NBA) - de Vega–Karowski’87 gl 2 open chain (ABA) - Sklyanin’88 gl N open chain (NBA) - Martin–Galleas’04; Belliard–Ragoucy’09 osp M | 2 n open chain (Analytical BA) - Doikou et. al.’03 so 2 n open chain (NBA) - Gombor–Palla’16 2/19
Historical timeline gl 2 closed chain (ABA) - Faddeev–Sklyanin–Takhtadjan’79 gl N closed chain (NBA) - Kulish–Reshetikhin’81 sp 2 n closed chain (NBA) - Reshetikhin’85 so 2 n closed chain (NBA) - de Vega–Karowski’87 gl 2 open chain (ABA) - Sklyanin’88 gl N open chain (NBA) - Martin–Galleas’04; Belliard–Ragoucy’09 osp M | 2 n open chain (Analytical BA) - Doikou et. al.’03 so 2 n open chain (NBA) - Gombor–Palla’16 2/19
Notation and definitions Throughout, ± will distinguish the orthogonal and symplectic cases. � with upper sign . so 2 n g 2 n = sp 2 n with lower sign . The gl n invariant R -matrix (Yang’68), R ( u ) := I − P u ∈ End ( C n ⊗ C n ) . The g 2 n invariant R -matrix (Zamolodchikov’78), R ( u ) := I − P Q κ − u ∈ End ( C 2 n ⊗ C 2 n ) , u − where Q = P t , Q 2 = 2 nQ and κ = n ∓ 1. 3/19
The orthogonal/symplectic open spin chain The state space of the chain is given by, M = L 1 ( λ 1 ) ⊗ · · · ⊗ L ℓ ( λ ℓ ) ⊗ M ℓ +1 ( µ ) . Each L i ( λ i ) is a highest weight g 2 n module of weight ( k i , 0 , . . . , 0 ) for so 2 n , � �� � n − 1 λ i = (1 , . . . , 1 , 0 , . . . , 0 ) for sp 2 n . � �� � � �� � n − k i k i M ℓ +1 ( µ ) is a one-dimensional vector space corresponding to one of two distinct diagonal boundary types diag(1 , . . . , 1 , − 1 , . . . , − 1 , 1 , . . . , 1 ) g 2 p ⊕ g 2 q � �� � � �� � � �� � p 2 q p K = diag(1 , . . . , 1 , − 1 , . . . , − 1 ) gl n � �� � � �� � n n 4/19
The monodromy matrix The double-row monodromy matrix S ( u ) ∈ End ( C 2 n ⊗ M ) is S a ( u ) ≡ L a 1 ( u ) · · · L a ℓ ( u ) K a ( u ) L t a ℓ ( κ − u ) · · · L t a 1 ( κ − u ) Lax operators L ai ( u ) ∈ End ( C 2 n ⊗ L i ( λ i )) are constructed via fusion and satisfy R ab ( u − v ) L ai ( u ) L bi ( v ) = L bi ( v ) L ai ( u ) R ab ( u − v ) . Boundary Lax operator K ( u ) ∈ End ( C 2 n ) is a diagonal matrix . The monodromy matrix S ( u ) satisfies the reflection equation R ab ( u − v ) S a ( u ) R ab ( u + v ) S b ( v ) = S b ( v ) R ab ( u + v ) S b ( u ) R ab ( u − v ) . Problem Diagonalise τ ( u ) := tr S ( u ) on the spin chain M . 5/19
The monodromy matrix The double-row monodromy matrix S ( u ) ∈ End ( C 2 n ⊗ M ) is S a ( u ) ≡ L a 1 ( u ) · · · L a ℓ ( u ) K a ( u ) L t a ℓ ( κ − u ) · · · L t a 1 ( κ − u ) Lax operators L ai ( u ) ∈ End ( C 2 n ⊗ L i ( λ i )) are constructed via fusion and satisfy R ab ( u − v ) L ai ( u ) L bi ( v ) = L bi ( v ) L ai ( u ) R ab ( u − v ) . Boundary Lax operator K ( u ) ∈ End ( C 2 n ) is a diagonal matrix . The monodromy matrix S ( u ) satisfies the reflection equation R ab ( u − v ) S a ( u ) R ab ( u + v ) S b ( v ) = S b ( v ) R ab ( u + v ) S b ( u ) R ab ( u − v ) . Problem Diagonalise τ ( u ) := tr S ( u ) on the spin chain M . 5/19
The symmetry relation The entries of S ( u ) are not algebraically independent, which is in part summarised by the symmetry relation (Guay–Regelskis’16), S t ( u ) = γ S ( κ − u ) ± S ( u ) − S ( κ − u ) + tr( K ( u )) S ( u ) − tr( S ( u )) . 2 u − κ 2 u − 2 κ where γ = +1 or γ = − 1, depending on the boundary type. Multiplication by a certain scalar factor S ( u ) = g ( u ) S ( u ) leads to a “boundary independent” symmetry relation � � 1 S ( κ − u ) ± S ( u ) 2 u − κ − tr S ( u ) S t ( u ) = − 1 ± 2 u − 2 κ. 2 u − κ 6/19
The symmetry relation The entries of S ( u ) are not algebraically independent, which is in part summarised by the symmetry relation (Guay–Regelskis’16), S t ( u ) = γ S ( κ − u ) ± S ( u ) − S ( κ − u ) + tr( K ( u )) S ( u ) − tr( S ( u )) . 2 u − κ 2 u − 2 κ where γ = +1 or γ = − 1, depending on the boundary type. Multiplication by a certain scalar factor S ( u ) = g ( u ) S ( u ) leads to a “boundary independent” symmetry relation � � 1 S ( κ − u ) ± S ( u ) 2 u − κ − tr S ( u ) S t ( u ) = − 1 ± 2 u − 2 κ. 2 u − κ 6/19
Nesting procedure - gl n open spin chain In the gl n case, a ( u ) B ( u ) S ( gl n ) ( u ) = . C ( u ) D ( u ) As an ( n − 1) × ( n − 1) matrix of operators, D ( u ) satisfies R ′ ab ( u − v ) D a ( u ) R ′ ab ( u + v ) D b ( v ) = D b ( v ) R ′ ab ( u + v ) D a ( u ) R ′ ab ( u − v ) . Creation operators B a i ( u i ) give rise to the Bethe vector: Φ( u ) = B a 1 ( u 1 ) · · · B a m ( u m ) · Φ ′ a 1 ,..., a m . where u = ( u 1 , . . . , u m ) and a 1 , . . . , a m label auxiliary spaces, each being a copy of C n , and Φ ′ a 1 ,..., a m is a “nested” Bethe vector for the residual gl n − 1 open spin chain (Belliard–Ragoucy’09). 7/19
Nesting procedure - g 2 n open spin chain For g 2 n , we split the matrix S ( u ) into four n × n submatrices: A ( u ) B ( u ) S ( u ) = C ( u ) D ( u ) As an n × n matrix of operators, A ( u ) satisfies R ab ( u − v ) A a ( u ) R ab ( u + v ) A b ( v ) = A b ( v ) R ab ( u + v ) A a ( u ) R ab ( u − v ) + R ab ( u − v ) B a ( u ) U ab ( u + v ) C b ( v ) + B b ( v ) U ab ( u + v ) C a ( u ) R ab ( u − v ) , with the gl n -invariant R -matrix R ( u ), and U ( u ) := − P / u − Q / ( κ − u ). 8/19
Top level of nesting - creation operator B ( u ) matrix contains creation operators for the top-level excitations, that correspond to n th root vectors of g 2 n . We reinterpret B ( u ) as a row vector in two auxiliary spaces, n � j ∈ B ( u ) ⊗ ( C n ) ∗ ⊗ ( C n ) ∗ b n − i +1 , j ( u ) ⊗ e ∗ i ⊗ e ∗ β ˜ aa ( u ) := i , j =1 Bethe vector with m top-level excitations, � m 1 � � � Ψ( u ) = β ˜ a i a i ( u i ) R a j ˜ a i ( − u i − u j ) · Φ ˜ a m a m . a 1 a 1 ,... ˜ i =1 j = i − 1 a m a m ∈ ( C n ) ⊗ 2 m ⊗ M . where u = ( u 1 , . . . , u m ) and Φ ˜ a 1 a 1 ,... ˜ 9/19
Symmetry relation in block form In block form, the symmetry relation gives a linear relation between the A and D blocks of S ( u ), � � � tr A ( u ) � u 1 A ( κ − u ) ± A ( u ) D t ( u ) = − 1 ± , 2 u − κ − 2 u − κ 2 u − κ where brace brackets denote symmetrisation � u := f ( u ) + f ( κ − u ) . � f ( u ) In particular, the rescaled transfer matrix may be written in terms of the block A of S ( u ) only: � � u τ ( u ) := tr S ( u ) = 2 u − 2 κ p ( u ) tr A ( u ) . g ( u ) where p ( u ) = 1 / (2 u − κ ). 10/19
Exchange relation Using the symmetry relation, the AB exchange relation may be written � � v β ˜ � � v p ( v ) S ′ p ( v ) A a ( v ) a 1 a 1 ( u ) = β ˜ a 1 a 1 ( u ) a 1 a 1 ( v ; u ) a ;˜ � � v 1 p ( v ) β ˜ a 1 a 1 ( v ) � � w , p ( w ) S ′ + a 1 a 1 ( w ; u ) Res a ;˜ p ( u ) u − v w → u where S ′ a 1 a 1 ( v ; u ) = R t a 1 a ( u − v ) R t a 1 a ( κ − u − v ) A a ( v ) a ;˜ ˜ × R t a 1 a ( u − v ± 1) R t a 1 a ( κ − u − v ± 1) . ˜ 11/19
Exchange relation for multiple excitations Acting with the transfer matrix on the Bethe vector we find � m 1 � � � τ ( v ) · Ψ( u ) = β ˜ a i a i ( u i ) R a j ˜ a i ( − u i − u j ) i =1 j = i − 1 � v · Φ ˜ � p ( v ) tr S ′ a ( v ; u ) a m a m + UWT , × a 1 a 1 ,... ˜ where S ′ a ( v ; u ) is the nested monodromy matrix , m m � � S ′ R t R t a ( v ; u ) := a i a ( u i − v ) a i a ( κ − u i − v ) ˜ i =1 i =1 1 1 � � R t R t × A a ( v ) a i a ( u i − v ± 1) a i a ( κ − u i − v ± 1) ˜ i = m i = m and UWT stands for the unwanted terms. 12/19
Recommend
More recommend