Near-infrared spectroscopy of Type Ia supernovae Eric Y. Hsiao Las Campanas Observatory Aarhus University Florida State University on behalf of the Carnegie Supernova Project and collaborations M. M. Phillips, C. Contreras, N. Morrell, C. R. Burns, M. Stritzinger, C. Gall, S. E. Persson, N. B. Suntzeff, W. L. Freedman G. H. Marion, D. J. Sand, T. Diamond, R. P . Kirshner, et al.
Why NIR? � 20 B � 19 M max � 18 0.01 < z < 0.1 (H o = 74) � 17 Cepheid, SBF, PNLF � 20 V optical � 19 M max � 18 � 17 � 20 I KC � 19 NIR optical M max � 18 � 17 � 20 J � 19 M max � 18 � 17 � 20 H � 19 NIR M max � 18 � 17 � 20 K � 19 M max � 18 Kasen (2006) � 17 0.8 1.0 1.2 1.4 1.6 1.8 2.0 � m 15 (B) Phillips (2005) Theory Observation Eric Y. Hsiao 2 Carnegie SN Ia Progenitor Workshop, August 2015
Why NIR? � 20 � 19.5 � 19 Peak Magnitude � 18.5 � 18 � 17.5 � 17 M B M H � 16.5 optical NIR B 0 � µ H 0 � µ � 16 0.8 1 1.2 1.4 1.6 0.8 1 1.2 1.4 1.6 � m 15 (B) � m 15 (B) Mandel et al. (2011) Eric Y. Hsiao 3 Carnegie SN Ia Progenitor Workshop, August 2015
Why NIR? Credit: ESO In the NIR, achieve higher precision through 2 routes: ■ By avoiding things we do not understand (shortcut) ■ By constraining the physics (more fun!) Eric Y. Hsiao 4 Carnegie SN Ia Progenitor Workshop, August 2015
CSP NIR spectroscopy Carnegie Supernova Project ■ CSP I (2004-2008) ■ CSP II (2011-2015) PI: Mark Phillips NIR observations of ~100 SNe Ia 1-m Swope optical light curves 2.5-m du Pont NIR light curves, optical spectra 6.5-m Magellan NIR spectra Credit: Yuri Beletsky Eric Y. Hsiao 5 Carnegie SN Ia Progenitor Workshop, August 2015
CSP NIR spectroscopy # of Ia # of Ia optical spectra NIR spectra 10 4 10 2 41 from Marion et al. (2009) + 91T, 94D, 98bu, 99by, 99ee, 02bo, 02dj, 03du, 05cf, 05df, 11fe, 13ebh,14J Eric Y. Hsiao 6 Carnegie SN Ia Progenitor Workshop, August 2015
CSP NIR spectroscopy Hsiao et al. in prep Eric Y. Hsiao 7 Carnegie SN Ia Progenitor Workshop, August 2015
Probing SN Ia physics ■ Unburned material Premax C I 1.0693 Marion et al. (2006) ■ Boundary between C/O burning Premax Mg II 1.0927 Wheeler et al. (1998) ■ Radioactive nickel Postmax H-band break Wheeler et al. (1998), Höflich et al. (2002) ■ Stable nickel Transitional phase [Ni II] Friesen et al. (2014) ■ Companion signature Postmax P-beta Maeda et al. (2014) ■ Central density and B-field Nebular phase [Fe II] 1.6440 Penney & Höflich (2014), Diamond et al. (2015) Eric Y. Hsiao 8 Carnegie SN Ia Progenitor Workshop, August 2015
Unburned material Premax C I 1.0693 ■ Carbon: pristine material from the progenitor ■ Incomplete burning: constraints for explosion models ■ Optical C II 6580 detected in 20-30% of SNe Ia Thomas et al. (2011) Folatelli et al. (2012) Silverman et al. (2012) Thomas et al. (2011) Eric Y. Hsiao 9 Carnegie SN Ia Progenitor Workshop, August 2015
Unburned material Premax C I 1.0693 velocity (10 3 km/s) � 20 � 10 0 � 20 � 10 0 � 20 � 10 0 � 20 � 10 0 � 20 � 10 0 � 20 � 10 0 � 20 � 10 0 � 20 � 10 0 � 20 � 10 0 � 20 � 10 0 optical C II NIR C I 1.4 � 12.8 � 12.7 � 9.1 � 11.9 � 9.9 � 0.6580 � 1.0693 � 11.1 � 12.6 � 4.0 1.2 � 9.9 � 10.7 � 3.3 � 6.2 � 6.3 log 10 (F � ) + constant � 6.7 1.0 � 6.6 � 6.8 � 6.7 � 3.6 � 3.8 0.8 � 0.4 � 2.9 � 3.7 � 0.5 � 1.0 0.6 � 0.6 +0.4 � 3.9 � 0.4 � 1.0 +0.3 0.4 SYNAPPS SYNAPPS 0.2 C II C I SN 1999by iPTF13ebh SN 2011fe SN 2014J ASAS14lp 0.0 0.60 0.65 1.00 1.05 0.60 0.65 1.00 1.05 0.60 0.65 1.00 1.05 0.60 0.65 1.00 1.05 0.60 0.65 1.00 1.05 rest wavelength ( µ m) Hsiao et al. (2013, 2015), Sand et al. in prep ■ NIR provides a more complete census of carbon than the optical ■ Unburned material ubiquitous? Eric Y. Hsiao 10 Carnegie SN Ia Progenitor Workshop, August 2015
Boundary between C/O burning Premax Mg II 1.0927 ■ Strong, isolated line ■ Flat Mg velocity evolution: bottom of C burning layer ■ Boundary between C/O burning ■ Sensitive to transition density Wheeler et al. (1998), Höflich et al. (2002) Eric Y. Hsiao 11 Carnegie SN Ia Progenitor Workshop, August 2015
Boundary between C/O burning Premax Mg II 1.0927 15 15 02dj SNe with time series 14 SNe without time series Mg II � 1.0927 velocity (10 3 km/s) Mg II � 1.0927 velocity (10 3 km/s) 14 13 98bu 13 05am 02bo 12 03du 12 99ee 94D 94D 11 05cf 99by 11iv 11fe 99ee 11 02cr 02dj 10 03W 03du 99by 05am 10 9 05cf 11fe 8 9 � 15 � 10 � 5 0 5 10 0.8 1.0 1.2 1.4 1.6 1.8 2.0 phase relative to B � band maximum (d) optical light � curve decline rate � m 15 (B) Hsiao et al. (2013) ■ No correlation with light-curve decline rate ■ Transition density not the main driver of SN brightness? Eric Y. Hsiao 12 Carnegie SN Ia Progenitor Workshop, August 2015
Radioactive nickel 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.3 2.5 5 NIR spectra H-band break of SN 2011fe 4 2011 � 08 � 26 t expl = 2.58 d t Bmax = � 14.6 d 3 2011 � 08 � 28 log 10 (F � ) + constant t expl = 4.56 d t Bmax = � 12.6 d 2011 � 08 � 31 t expl = 7.55 d t Bmax = � 9.7 d 2011 � 09 � 03 t expl = 10.55 d t Bmax = � 6.7 d 2 2011 � 09 � 07 t expl = 14.42 d Kirshner et al. (1973) t Bmax = � 2.8 d 2011 � 09 � 10 t expl = 17.52 d t Bmax = 0.3 d 2011 � 09 � 13 ■ H-band break: t expl = 20.55 d t Bmax = 3.3 d most prominent 1 2011 � 09 � 18 t expl = 25.45 d SN Ia NIR feature t Bmax = 8.2 d 2011 � 09 � 22 t expl = 29.53 d t Bmax = 12.3 d 2011 � 09 � 27 t expl = 34.52 d t Bmax = 17.3 d 0 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.3 2.5 observed wavelength ( µ m) Hsiao et al. (2013) Eric Y. Hsiao 13 Carnegie SN Ia Progenitor Workshop, August 2015
Radioactive nickel H-band break 4.5 f 1 99ee 11fe 11fe 4.0 98bu 99ee 98bu 98bu 99by 4.0 99ee 04da R=f 1 /f 0 04da 04S 04S f 0 3.5 3.5 05am H � band break ratio R H � band break ratio R 12 1.7 µ m 1.5 1.6 05cf 05cf 05cf 11fe 3.0 11iv 3.0 14J 05am 05am iPTF13ebh 2.5 02ha 11iv 11iv 2.5 iPTF13ebh 2.0 iPTF13ebh 1.5 2.0 99by 99by with time series without time series 1.0 0 5 10 15 20 25 0.8 1.0 1.2 1.4 1.6 1.8 2.0 0.6 0.8 1.0 1.2 rest � frame phase relative to B � band maximum (days) � m 15 (B) s BV Hsiao et al. (2013, 2015) ■ The strong correlation is consistent with Chandrasekhar-mass delayed detonation ■ Dynamical merger would yield the opposite trend and weaker correlation Eric Y. Hsiao 14 Carnegie SN Ia Progenitor Workshop, August 2015
Stable nickel Transitional phase [Ni II] SN2014J at 67d Without forbidden lines With forbidden lines Friesen et al. (2014) ■ 1.98 micron feature: possible [Ni II] ■ Nickel at late phase most likely stable nickel Eric Y. Hsiao 15 Carnegie SN Ia Progenitor Workshop, August 2015
Stable nickel 1.9 2.0 2.1 2.2 2.3 2.4 2.5 1.0 0.9 SN2012fr Transitional phase [Ni II] 65 d 0.8 69 d 0.7 72 d normalized F � 77 d 0.6 99 d 113 d 0.5 0.4 Could come from: 0.3 ■ High density progenitor 0.2 Friesen et al. (2014) 0.1 CSP data 0.0 ■ Metallicity of progenitor 1.9 2.0 2.1 2.2 2.3 2.4 2.5 Timmes et al. (2003) rest wavelength ( µ m) Archival data ■ Neutronization in simmering phase Piro & Bildsten (2008) Friesen et al. (2014) Eric Y. Hsiao 16 Carnegie SN Ia Progenitor Workshop, August 2015
Companion signature Postmax P-beta ■ H stripped off non- degenerate companion, embedded at low velocity ■ Optical depth higher for optical than NIR ■ P-beta stronger and appear above photosphere earlier than H-alpha Maeda et al. (2014) Eric Y. Hsiao 17 Carnegie SN Ia Progenitor Workshop, August 2015
Central density and B-field Nebular phase [Fe II] 1.6440 Diamond et al. (2015) ■ Extract central density and B-field through [Fe II] line width ■ Central density constraints accretion rate and progenitor system Eric Y. Hsiao 18 Carnegie SN Ia Progenitor Workshop, August 2015
■ How can NIR spectroscopy help? ■ Don’t stop at the optical! Eric Y. Hsiao 19 Carnegie SN Ia Progenitor Workshop, August 2015
Recommend
More recommend