multiph mu tiphysics ysics simu mulation lation and d cha
play

Multiph Mu tiphysics ysics Simu mulation lation and d Cha - PowerPoint PPT Presentation

Multiph Mu tiphysics ysics Simu mulation lation and d Cha haract racteriza erization tion In su supp pport t of En Energ ergy y Ge Geotechnolog echnology Xiong (Bill) Yu, Ph.D., P .E. Associate Professor, Department of Civil


  1. Multiph Mu tiphysics ysics Simu mulation lation and d Cha haract racteriza erization tion In su supp pport t of En Energ ergy y Ge Geotechnolog echnology Xiong (Bill) Yu, Ph.D., P .E. Associate Professor, Department of Civil Engineering Case Western Reserve University April 26, 2014 Contributors from Former and Current Students: Zhen (Leo) Liu , Assistant Professor, Michigan Technological University Chanjuan Han , Graduate Research Assistant Bin (Ben) Zhang , Michael Baker Jr. Inc.

  2. About myself  Ph.D. Purdue University 2003, B.S. and M.S. Tsinghua University 1997, 2000  Joined CWRU in 2005  Current program affiliation  Civil engineering/Geotechnical engineering/Infrastructure engineering  EECS, MAE, MSE and other programs  Research program focus/interest  Sustainable geo/infrastructure (design, sensor technology, SHM, field instrumentation diagnose, etc.)  Durable and multifunctional civil engineering materials  Smart engineering systems  Energy and efficiency

  3. Challenges Facing the Rising Energy Demand Source: Energy Information Administration Data

  4. Multiphysics: Example Unsaturated uniform soil specimen subjected to surface freezing Thermal boundary load 0.20 0.20 Thermo-hydro 0.15 0.15 12 hours 0 hour Height (m) Height (m) 0.10 0.10 0.05 0.05 0.00 0.00 0.25 0.30 0.35 0.40 0.45 0.50 0.25 0.30 0.35 0.40 0.45 0.50 0.20 Distribution of total volumetric water content Thermo-mechano Liu and Yu 2012 Vertical internal stress

  5. Understand the Multiphysics Process in Gas Hydrate Exploration

  6. Gas Hydrate Definition: Gas hydrates, or clathrate hydrates, is a solid, ice-like form consisting of a host lattice of water molecules that enclose voids, each of which may contain one molecule of a guest gas (Selim and Sloan 1985) . Guest gases: CH 4 , C 2 H 6 , C 3 H 8 , i-C 4 H 10 , CO 2 etc. (Bishnoi 1996, Englezos 1993). Natural occurring conditions: High Pressures and Low Temperatures (Oceanic Sediments and Permafrost Regions) Massive gas hydrates Gas hydrate-bearing sediment Gas hydrate studied Gas hydrate core sample from 920 m deep in the Northern Gulf of Mexico at the Mallik site, Canada (usgs.gov) (www.sciencewatch.com)

  7. Uniqueness as Energy Source  Huge amounts of methane in a concentrated form  Combustible low molecular weight hydrocarbons such as methane, ethane, and propane Organic Carbon in the Earth (Kvenvolden, 1993; Hyndman and Dallimore, 2001)

  8. Gas Hydrate Explorations  Challenges:  Limitations in understanding hydrate reservoirs behaviors (Pawar and Zyvoloski 2005).  Optimal strategy for gas hydrate resource utilization.  Strategies  Simulation studies including analytical and numerical models coordinated with laboratory studies to address knowledge gaps that are critical to the prediction of gas production (Moridis et al. 2006).  Field validation

  9. Mechanisms Involved Energy Balance (Thermal Field, T ) 1. Mass Transfer (Hydraulic Field, H ) 2. Momentum Balance (Mechanical Field, M ) 3. Chemical Kinetics (Chemical Field, C ) 4.  it is a MULTI-PHYSICAL process.

  10. Trends in Gas Hydrate Simulations  Simulation models for gas hydrate  THMC model emerging  Seafloor stability, geohazards prediction THMC Liu and Yu 2013

  11. Multiphysics Simulation Structure T hermal ( T, Ө ) Energy Balance (T) First Layer Coupling Fourier’s eq. T Second Layer Coupling Third Layer Coupling      ( , ), ( , C ) i i, t  C hemical Field    th ( , , ), T T i Ө h u Experimental ( C ) Water Characteristic Ө M echanical ( u, E   H ydraulic ( h,T, Ө ) ( , ) Moment Balance i Mass Balance(H) T, Ө ,h ) (M) Richards’ eq. Navier’s eq. 2/4/2012

  12. Governing Equations du          v v q h  u       Mass Balance d   dt      j j v m j j j j dt  d               w v v m w w w w w w w w dt Momentum Balance     d d                   g g v v m g g g g g g g g g g g dt dt  d   Energy Balance   h m   h h dt d v          j j j T d v v F s 0 j j j j j dt dt d v                σ w v v g i + F m v w w w w w w w w w w w w w dt d v                g σ v v g i + F m v g g g g g g g g g g w w w dt          σ F g 0 h h h h h          σ g F 0 s s s s s     e       j j T e v e  j j j j t           T z                                    σ  v v F v v v C T C T H m g g     j j j  j j  j j j j j j j j j j j j j j t t j j j j j

  13. Model simplifications    d k   Water Mass (1)        w w   p g i m w w w w   dt g       d d k          g g g   p g i m Gas Mass (1) g g g g g   dt dt g  d   h m Hydrate Mass (1) h h dt       Solid Momentum                    σ δ ' p g i 0     (Mechanical,3) s h s h f s s h h      C j k   T             j      System Energy (1)  C  T T H p g i  j j j j j t  g       j j w,g

  14. Auxiliary Relationships    σ σ j j    σ δ p w w w k        w v p g i    σ δ p    σ C ε w w w   ' : g   g g g p p f S w w      g w 1 k   p Sp 1 S p      g f w g v i p g 1           T g g g   ε g σ σ δ u u ' p   g g f 2          σ σ σ σ δ ' p sh s h s h f   T     p A+B exp C e      (n = 5.75 in this study)   CH nH O CH +nH O 4 2 4 2 13        9400          7 3 h0   m 0.585 10 p p exp kg m s h h f e   23  T M p   h g g M 103.5         g       1 w RT m 5.75 m 5.75 m 4.9801 m w h h h w g h s,0 119.5 M h M 16       g 0.13389 m m m m g h h h M 119.5 h   54.2 10 m 54200     3 3 H h m 494977.17 m W/m   h h 3 M 109.5 10 h

  15. Implementation USGS-NETL Gas Hydrate Simulation Comparison Project: Case 1 (No Dissociation) 20 m Top Bottom 1.0 0.8 0.7 0.8 HydrateResSim 0.6 MH21 HydrateResSim 0.6 Saturation STARSOIL MH21 Saturation STARSSOLID 0.5 STARSOIL STOMPHYD STARSSOLID 0.4 UNIVHOSTON STOMPHYD 0.4 NewModel UNIVHouston NewModel 0.2 0.3 0.0 0.2 0 4 8 12 16 20 0 4 8 12 16 20 Distance from bottom (m) Distance from bottom (m) 1 Day 100 Day Saturation at different times Liu and Yu 2013b

  16. Implementation USGS-NETL Gas Hydrate Simulation Comparison Project: Case 2 (Dissociation) 20 m Top Bottom 0.65 0.7 0.60 0.55 0.6 0.50 Saturation 0.5 HydrateResSim HydrateResSim Saturation 0.45 MH21 MH21 STARS STARS 0.40 0.4 STARSSOLID STARSSOLID 0.35 STOMPHYD STOMPHYD 0.3 TOUGHFXHydrate TOUGHFXHydrate 0.30 UnivHouston UnivHouston NewModel 0.25 NewModel 0.2 0.20 0 4 8 12 16 20 0 4 8 12 16 20 Distance from bottom (m) Distance from bottom (m) 1 Day 100 Day Saturation at different times Liu and Yu 2013b

  17. Hydrate Dissociation Ground Settlement 3.5 Subsidence 3.0 Profile of a hydrate-bearing zone and 2.5 Subsidence (m) corresponding computational domain 2.0 1.5 1.0 0.5 Liu and Yu 2013b 0.0 -0.5 0 10 20 30 40 50 60 70 80 90 100 Time (day)

  18. Understand the Multiphysics Process in Underground Geothermal Heat Exchanger

  19. Geothermal Heat Exchanger heat absorption heat dispersion Summer: cooling mode Winter: heating mode

  20. Prototype House with Geothermal Heat Pump Prototype • Geothermal heat pump system installed under a three-floor resident house located in Cleveland • Instrumented (Tin, Tout, flow velocity, power consumption, etc.)

Recommend


More recommend