multimedia course continuum mechanics for engineers
play

Multimedia course CONTINUUM MECHANICS FOR ENGINEERS By Prof. - PowerPoint PPT Presentation

Multimedia course CONTINUUM MECHANICS FOR ENGINEERS By Prof. Xavier Oliver Technical University of Catalonia (UPC/BarcelonaTech) International Center for Numerical Methods in Engineering (CIMNE) http://oliver.rmee.upc.edu/xo First edition May


  1. Multimedia course CONTINUUM MECHANICS FOR ENGINEERS By Prof. Xavier Oliver Technical University of Catalonia (UPC/BarcelonaTech) International Center for Numerical Methods in Engineering (CIMNE) http://oliver.rmee.upc.edu/xo First edition May 2017 This material is distributed under the terms of the Creative Commons Attribution Non- Commercial No-Derivatives (CC-BY-NC-ND) License, which permits any noncommercial use, DOI : distribution, and reproduction in any medium of the unmodified original material ,provided the original author(s) and source are credited. 10.13140/RG.2.2.22558.95046

  2. The available media  786 slides  550 book-pages  141 movies

  3. How to interact with the media ... 1 Choose the slide with the subject you are interested in

  4. How to interact with the media ... 2 To watch the movie explaining the slide, click on the link-to-YouTube icon

  5. How to interact with the media ... 3 To reach the book-section dealing with the slide, click on the link-to-book icon

  6. How to interact with the media ... 4 To return to the slide, click on the link-to-slide icon

  7. Acknowledgements  Prof. Carlos Agelet (CIMNE/UPC)  Dr. Manuel Caicedo (CIMNE/UPC)  Dr. Eduardo Car (CIMNE)  Prof. Eduardo Chaves (UCLM)  Dr. Ester Comella s (CIMNE)  Dr. Alex Ferrer (CIMNE/UPC)  Prof. Alfredo Hues pe (CIMNE/UNL/UPC)  Dr. Oriol Lloberas-Va lls (CIMNE/UPC)  Dr. Julio Marti (CIMNE) … and the past students of my courses on Continuum Mechanics … Than anks for you our r con ontri tributi tion !!!! !!!!

  8. TENSOR ALGEBRA Multimedia Course on Continuum Mechanics

  9. Overview  Introduction to tensors Lecture 1 Lecture 2  Indicial or (Index) notation  Vector Operations Lecture 3 Lecture 4  Tensor Operations Lecture 5  Differential Operators Lecture 6  Integral Theorems Lecture 7  References 2

  10. Introduction SCALAR ρ θ , , ... v VECTOR , , ... v f σ ε MATRIX , , ... ? , ... C 4

  11. Concept of Tensor  A TENSOR is an algebraic entity with various components which generalizes the concepts of scalar, vector and matrix.  Many physical quantities are mathematically represented as tensors.  Tensors are independent of any reference system but, by need, are commonly represented in one by means of their “component matrices”.  The components of a tensor will depend on the reference system chosen and will vary with it. 5

  12. Order of a Tensor  The order of a tensor is given by the number of indexes needed to specify without ambiguity a component of a tensor.  Scalar : zero dimension α = a 3.14   1.2   = , a a  Vector : 1 dimension v i 0.3     0.8     0.1 0 1.3  2 nd order : 2 dimensions , A A   = 0 2.4 0.5 E   ij    3 rd order : 3 dimensions A , A  1.3 0.5 5.8  , A A  4 th order … 6

  13. Cartesian Coordinate System  Given an orthonormal basis formed by three mutually perpendicular unit vectors: ⊥ ⊥ ⊥ ˆ ˆ ˆ ˆ ˆ ˆ , , e e e e e e 1 2 2 3 3 1 Where: = = = ˆ ˆ ˆ 1 , 1 , 1 e e e 1 2 3  Note that =   if 1 i j ⋅ = = δ ˆ ˆ   e e ≠ i j ij if  0  i j 7

  14. Indicial or (Index) Notation Tensor Algebra 10

  15. Tensor Bases – VECTOR  A vector can be written as a unique linear combination of the v { } ˆ i i ∈ three vector basis for . e 1,2,3 v = + + ˆ ˆ ˆ v v v v e e e 1 1 2 2 3 3 v 3  In matrix notation:   v 1   [ ] =  v v  2 v   1  v  v 3 2  In index notation: = ∑ ˆ v i v e tensor as a physical entity i i [ ] component i of the tensor in the i = v i v { } i ∈ given basis 1,2,3 11

  16. Tensor Bases – 2 nd ORDER TENSOR  A 2 nd order tensor can be written as a unique linear combination A { } ⊗ ≡ i j ∈ of the nine dyads for . ˆ ˆ ˆ ˆ e e e e , 1,2,3 i j i j ( ) ( ) ( ) = ⊗ + ⊗ + ⊗ + ˆ ˆ ˆ ˆ ˆ ˆ A e e e e e e A A A 1 1 1 2 1 3 11 12 13 ( ) ( ) ( ) + ⊗ + ⊗ + ⊗ + ˆ ˆ ˆ ˆ ˆ ˆ A e e A e e A e e 2 1 2 2 2 3 21 22 23 ( ) ( ) ( ) + ⊗ + ⊗ + ⊗ ˆ ˆ ˆ ˆ ˆ ˆ e e e e e e A A A 31 3 1 32 3 2 33 3 3 Alternatively, this could have been written as: = + + + ˆ ˆ ˆ ˆ ˆ ˆ A e e e e e e A A A 11 1 1 12 1 2 13 1 3 + + + + ˆ ˆ ˆ ˆ ˆ ˆ e e e e e e A A A 2 1 2 2 2 3 21 22 23 + + + ˆ ˆ ˆ ˆ ˆ ˆ A e e A e e A e e 3 1 3 2 3 3 31 32 33 12

  17. Tensor Bases – 2 nd ORDER TENSOR ( ) ( ) ( ) = ⊗ + ⊗ + ⊗ + ˆ ˆ ˆ ˆ ˆ ˆ A A e e A e e A e e 1 1 1 2 1 3 11 12 13 ( ) ( ) ( ) + ⊗ + ⊗ + ⊗ + ˆ ˆ ˆ ˆ ˆ ˆ e e e e e e A A A 2 1 2 2 2 3 21 22 23 ( ) ( ) ( ) + ⊗ + ⊗ + ⊗ ˆ ˆ ˆ ˆ ˆ ˆ e e e e e e A A A 3 1 3 2 3 3 31 32 33  In matrix notation:   A A A 11 12 13   [ ] =  A A A A  21 22 23     A A A 31 32 33  In index notation: ∑ ( ) tensor as a = ⊗ ˆ ˆ A ij A e e physical entity i j ij [ ] component ij of the tensor = A A { } i j ∈ , 1,2,3 in the given basis ij ij 13

  18. Tensor Bases – 3 rd ORDER TENSOR  A 3 rd order tensor can be written as a unique linear combination A { } ⊗ ⊗ ≡ i j k ∈ of the 27 tryads for . ˆ ˆ ˆ ˆ ˆ ˆ , , 1,2,3 e e e e e e i j k i j k ( ) ( ) ( ) = ⊗ ⊗ + ⊗ ⊗ + ⊗ ⊗ + ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ A A A A e e e e e e e e e 1 1 1 1 2 1 1 3 1 111 121 131 ( ) ( ) ( ) + ⊗ ⊗ + ⊗ ⊗ + ⊗ ⊗ + ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ A A A e e e e e e e e e 2 1 1 2 2 1 2 3 1 211 221 231 ( ) ( ) ( ) + ⊗ ⊗ + ⊗ ⊗ + ⊗ ⊗ + ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ A A A e e e e e e e e e 3 1 1 3 2 1 3 3 1 311 321 331 ( ) ( ) + ⊗ ⊗ + ⊗ ⊗ + ˆ ˆ ˆ ˆ ˆ ˆ ... A e e e A e e e 1 1 2 1 2 2 112 122 Alternatively, this could have been written as: = + + + ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ A A e e e A e e e A e e e 111 1 1 1 121 1 2 1 131 1 3 1 + + + + ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ A e e e A e e e A e e e 2 1 1 2 2 1 2 3 1 211 221 231 + + + + ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ A A A e e e e e e e e e 3 1 1 3 2 1 3 3 1 311 321 331 + + + ˆ ˆ ˆ ˆ ˆ ˆ ... A e e e A e e e 1 1 2 1 2 2 112 122 14

  19. Tensor Bases – 3 rd ORDER TENSOR ( ) ( ) ( ) = ⊗ ⊗ + ⊗ ⊗ + ⊗ ⊗ + ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ A A e e e A e e e A e e e 111 1 1 1 121 1 2 1 131 1 3 1 ( ) ( ) ( ) + ⊗ ⊗ + ⊗ ⊗ + ⊗ ⊗ + ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ A A A e e e e e e e e e 2 1 1 2 2 1 2 3 1 211 221 231 ( ) ( ) ( ) + ⊗ ⊗ + ⊗ ⊗ + ⊗ ⊗ + ฀ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ A A A e e e e e e e e e 3 1 1 3 2 1 3 3 1 311 321 331 ( ) ( ) + ⊗ ⊗ + ⊗ ⊗ + ˆ ˆ ˆ ˆ ˆ ˆ A A ... e e e e e e 1 1 2 1 2 2 112 122  In matrix notation:         A A A   113 123 133 A A A      A A A  112 122 132   111 121 131   A A A   213 223 233   A A A [ ] =     A A A 212 222 232 A   211 221 231   A A A     313 323 333 A A A       A A A 312 322 332     311 321 331   15

  20. Tensor Bases – 3 rd ORDER TENSOR ( ) ( ) ( ) = ⊗ ⊗ + ⊗ ⊗ + ⊗ ⊗ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ A A A A e e e e e e e e e 1 1 1 1 2 1 1 3 1 111 121 131 ( ) ( ) ( ) + ⊗ ⊗ + ⊗ ⊗ + ⊗ ⊗ + ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ A A A e e e e e e e e e 2 1 1 2 2 1 2 3 1 211 221 231 ( ) ( ) ( ) + ⊗ ⊗ + ⊗ ⊗ + ⊗ ⊗ + ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ A A A e e e e e e e e e 3 1 1 3 2 1 3 3 1 311 321 331 ( ) ( ) + ⊗ ⊗ + ⊗ ⊗ + ˆ ˆ ˆ ˆ ˆ ˆ A A ... e e e e e e 1 1 2 1 2 2 112 122  In index notation: ( ) ∑ = ⊗ ⊗ = ˆ ˆ ˆ A A e e e ijk i j k ijk ( ) tensor as a = ⊗ ⊗ ≡ ˆ ˆ ˆ ˆ ˆ ˆ A A e e e e e e physical entity ijk i j k ijk i j k [ ] ijk = component ijk of the tensor A A { } ijk i j k ∈ in the given basis , , 1,2,3 16

Recommend


More recommend