multigrid discontinuous galerkin method for multigroup
play

Multigrid discontinuous Galerkin method for multigroup particle - PowerPoint PPT Presentation

Multigrid discontinuous Galerkin method for multigroup particle transport Pablo Lucero Interdisciplinary Research Center for Scientific Computing Universit at Heidelberg DEAL.II Workshop 2015 Pablo Lucero (IWR) MGDG for multigroup particle


  1. Multigrid discontinuous Galerkin method for multigroup particle transport Pablo Lucero Interdisciplinary Research Center for Scientific Computing Universit¨ at Heidelberg DEAL.II Workshop 2015 Pablo Lucero (IWR) MGDG for multigroup particle transport DEAL.II Workshop 2015

  2. Radiative transfer in astrophysics Pablo Lucero (IWR) MGDG for multigroup particle transport DEAL.II Workshop 2015

  3. Radiative transfer in climatology Pablo Lucero (IWR) MGDG for multigroup particle transport DEAL.II Workshop 2015

  4. Radiative transfer in neutron and gamma transport Pablo Lucero (IWR) MGDG for multigroup particle transport DEAL.II Workshop 2015

  5. Particle density description Pablo Lucero (IWR) MGDG for multigroup particle transport DEAL.II Workshop 2015

  6. Transport equation Ψ ′ = Ψ( Ω ′ , E ′ , x ) Ω = ( ψ, φ ) Ψ = Ψ( Ω , E , x ) σ s ( Ω ′ , E ′ ) = σ s ( Ω ′ → Ω , E ′ → E , x ) σ T = σ T ( E , x ) q = q ( Ω , E , x ) Transport equation � E max � σ s ( Ω ′ , E ′ ) Ψ ′ d Ω ′ dE ′ = q , Ω · ∇ Ψ + σ T Ψ − 0 S ∀ ( Ω , E , x ) ∈ S × ( 0 , E max ] × D Boundary condition Ψ( Ω , E ) = 0 ∀ ( Ω , E ) ∈ S × ( 0 , E max ] × ∂ D , Ω · n < 0 Pablo Lucero (IWR) MGDG for multigroup particle transport DEAL.II Workshop 2015

  7. Transport equation with fission νσ ′ f = νσ f ( E ′ ) χ = χ ( E ) Transport equation � E max � E max � σ s ( Ω ′ , E ′ ) Ψ ′ d Ω ′ dE ′ − χ f Ψ ′ dE ′ = q νσ ′ Ω · ∇ Ψ + σ T Ψ − 0 S 0 Eigenvalue problem � E max � E max � σ s ( Ω ′ , E ′ ) Ψ ′ d Ω ′ dE ′ = 1 νσ ′ f Ψ ′ dE ′ Ω · ∇ Ψ + σ T Ψ − χ k eff 0 S 0 Pablo Lucero (IWR) MGDG for multigroup particle transport DEAL.II Workshop 2015

  8. Diffusion approximation � � J = J ( E , x ) = Ω Ψ d Ω Φ = Φ( E , x ) = Ψ d Ω S S Ω · ∇ Ψ = ∇ · ( Ω Ψ) = ∇ · J J ≈ − D ( E , x ) ∇ Φ Diffusion equation � E max σ s ( E ′ ) Φ ′ dE ′ = q −∇ · ( D ∇ Φ) + σ T Φ − 0 � E max � E max σ s ( E ′ ) Φ ′ dE ′ − χ f Φ ′ dE ′ = q νσ ′ −∇ · ( D ∇ Φ) + σ T Φ − 0 0 � E max � E max σ s ( E ′ ) Φ ′ dE ′ = 1 νσ ′ f Φ ′ dE ′ −∇ · ( D ∇ Φ) + σ T Φ − χ k eff 0 0 Pablo Lucero (IWR) MGDG for multigroup particle transport DEAL.II Workshop 2015

  9. Angle description Pablo Lucero (IWR) MGDG for multigroup particle transport DEAL.II Workshop 2015

  10. Angle collocation S n � E max � σ s ( Ω ′ , E ′ ) Ψ ′ d Ω ′ dE ′ = q , Ω · ∇ Ψ + σ T Ψ − 0 S Ψ i ′ = Ψ( Ω i ′ , E ′ , x ) Ψ i = Ψ( Ω i , E , x ) s ( E ′ ) = σ s ( Ω i ′ → Ω i , E ′ → E , x ) σ i ′ i q i = q ( Ω i , E , x ) � E max � E max n � σ s ( Ω ′ , E ′ ) Ψ ′ d Ω ′ dE ′ ≈ � ω i ′ σ i ′ i s ( E ′ ) Ψ i ′ dE ′ 0 S 0 i ′ = 1 Pablo Lucero (IWR) MGDG for multigroup particle transport DEAL.II Workshop 2015

  11. Angle collocation S n � E max � σ s ( Ω ′ , E ′ ) Ψ ′ d Ω ′ dE ′ = q , Ω · ∇ Ψ + σ T Ψ − 0 S  � E max n s ( E ′ ) Ψ i ′ dE ′ = q 1 � ω i ′ σ i ′ 1  Ω 1 · ∇ Ψ 1 + σ T Ψ 1 −     0  i ′ = 1     ...     � E max n    s ( E ′ ) Ψ i ′ dE ′ = q i � ω i ′ σ i ′ i Ω i · ∇ Ψ i + σ T Ψ i − 0  i ′ = 1     ...     � E max n   s ( E ′ ) Ψ i ′ dE ′ = q n  � ω i ′ σ i ′ n Ω n · ∇ Ψ n + σ T Ψ n −     0  i ′ = 1 Pablo Lucero (IWR) MGDG for multigroup particle transport DEAL.II Workshop 2015

  12. Multigroup Pablo Lucero (IWR) MGDG for multigroup particle transport DEAL.II Workshop 2015

  13. Multigroup � E max n s ( E ′ ) Ψ i ′ dE ′ = q i , � ω i ′ σ i ′ i Ω i · ∇ Ψ i + σ T Ψ i − 0 i ′ = 1 ( 0 , E max ] = ( 0 , E 1 ] ∪ ... ∪ ( E g − 1 , E g ] ∪ ... ∪ ( E G − 1 , E max ] � E g σ T ( E , x ) dE � E g E g − 1 σ i , g Ψ i , g = Ψ( Ω i , E , x ) dE T = Ψ i , g E g − 1 � E g � E max n � ω i ′ σ i ′ i s ( E ′ ) Ψ i ′ dE ′ dE 0 E g − 1 i ′ = 1 σ i ′ i , g ′ g = s Ψ i , g ′ Pablo Lucero (IWR) MGDG for multigroup particle transport DEAL.II Workshop 2015

  14. Multigroup � E max n s ( E ′ ) Ψ i ′ , g ′ dE ′ = q i , � ω i ′ σ i ′ i Ω i · ∇ Ψ i + σ T Ψ i − 0 i ′ = 1  G n  � � ω i ′ σ i ′ i , g ′ 1  Ψ i ′ , g ′ = q i , 1 Ω i · ∇ Ψ i , 1 + σ T , 1 Ψ i , 1 −   s    g ′ = 1 i ′ = 1     ...       G n   � � ω i ′ σ i ′ i , g ′ g Ψ i ′ , g ′ = q i , g Ω i · ∇ Ψ i , g + σ T , g Ψ i , g − s  g ′ = 1 i ′ = 1     ...      G n    � � ω i ′ σ i ′ i , g ′ G Ω i · ∇ Ψ i , G + σ T , G Ψ i , G − Ψ i ′ , g ′ = q i , G   s    g ′ = 1 i ′ = 1  Pablo Lucero (IWR) MGDG for multigroup particle transport DEAL.II Workshop 2015

  15. Discrete angle and energy system  i ′ , 1 i ′ , 1 i ′ , 1   1 , 1 ... ... n , 1   1 , 1 ... ... n , 1   1 , 1 ... ... n , 1  i ′ , 1 i ′ , 1 i ′ , 1 ... ... ... ... ... ... ... ... ... ... ... ...           i ′ , i   i ′ , i   i ′ , i   1 , i ... ... n , i ... 1 , i ... ... n , i ... 1 , i ... ... n , i           i ′ , 1   i ′ , 1   i ′ , 1   ... ... ... ... ... ... ... ... ... ... ... ...           i ′ , 1 i ′ , 1 i ′ , 1 1 , n ... ... n , n 1 , n ... ... n , n 1 , n ... ... n , n   1 , 1 g ′ , 1 G , 1    ... ... ... ... ...    i ′ , 1 i ′ , 1 i ′ , 1        1 , 1 ... ... n , 1 1 , 1 ... ... n , 1 1 , 1 ... ... n , 1    i ′ , 1 i ′ , 1 i ′ , 1  ... ... ... ... ... ... ... ... ... ... ... ...           i ′ , i   i ′ , i   i ′ , i   1 , i ... ... n , i ... 1 , i ... ... n , i ... 1 , i ... ... n , i            i ′ , 1   i ′ , 1   i ′ , 1   ... ... ... ... ... ... ... ... ... ... ... ...          i ′ , 1 i ′ , 1 i ′ , 1  1 , n ... ... n , n 1 , n ... ... n , n 1 , n ... ... n , n   g ′ , g 1 , g G , g   ... ... ... ... ...     i ′ , 1 i ′ , 1 i ′ , 1  1 , 1 ... ... n , 1   1 , 1 ... ... n , 1   1 , 1 ... ... n , 1      i ′ , 1 i ′ , 1 i ′ , 1 ... ... ... ... ... ... ... ... ... ... ... ...            i ′ , i   i ′ , i   i ′ , i   1 , i ... ... n , i ... 1 , i ... ... n , i ... 1 , i ... ... n , i           i ′ , 1   i ′ , 1   i ′ , 1   ... ... ... ... ... ... ... ... ... ... ... ...          i ′ , 1 i ′ , 1 i ′ , 1 1 , n ... ... n , n 1 , n ... ... n , n 1 , n ... ... n , n 1 , G g ′ , G G , G Pablo Lucero (IWR) MGDG for multigroup particle transport DEAL.II Workshop 2015

  16. Discontinuous Galerkin finite elements G n � � ω i ′ σ i ′ i , g ′ g Ω i · ∇ Ψ i , g ( x ) + σ T , g ( x )Ψ i , g ( x ) − ( x )Ψ i ′ , g ′ ( x ) = q i , g ( x ) s g ′ = 1 i ′ = 1 v ∈ L 2 ( D ) � � � V h = � v | K ∈ P K } := v 1 + v 2 } := v 1 n 1 + v 2 n 2 { { v } { { v n } 2 2 Pablo Lucero (IWR) MGDG for multigroup particle transport DEAL.II Workshop 2015

  17. Discontinuous Galerkin finite elements   G n G n � � � � � � ω i ′ σ i ′ i , g ′ g  v i , g d x a h ( ψ, v ) = ω i  Ω i · ∇ ψ i , g + σ T , g ψ i , g − ψ i ′ , g ′ s K K ∈ T h g = 1 i = 1 g ′ = 1 i ′ = 1 G � � � � + ω i | Ω i · n | ψ i v i d x + b h ( ψ, v ) F g = 1 Ω i · n ≤ 0 F ∈ F b h G n � � � 4 � � � b h ( ψ, v ) = ω i max { 4 , σ s h } | Ω i · n | { { ψ i , g n } }{ { v i , g n } } − 2 Ω i · { { ψ i , g n } }{ { v i , g } } d x F g = 1 i = 1 F ∈ F j h Pablo Lucero (IWR) MGDG for multigroup particle transport DEAL.II Workshop 2015

  18. Multigrid preconditioner with Schwarz smoothers Pablo Lucero (IWR) MGDG for multigroup particle transport DEAL.II Workshop 2015

  19. Source iteration? Coupled D=1e-05 Source Iteration D=1e-05 1e+06 50 1e+06 50 10000 10000 40 40 Frequency redistribution Frequency redistribution 100 100 30 30 1 1 20 20 0.01 0.01 10 10 0.0001 0.0001 1e-06 0 1e-06 0 1e-06 0.0001 0.01 1 100 10000 1e+06 1e-06 0.0001 0.01 1 100 10000 1e+06 Absorption Absorption Pablo Lucero (IWR) MGDG for multigroup particle transport DEAL.II Workshop 2015

Recommend


More recommend