Multigrid discontinuous Galerkin method for multigroup particle transport Pablo Lucero Interdisciplinary Research Center for Scientific Computing Universit¨ at Heidelberg DEAL.II Workshop 2015 Pablo Lucero (IWR) MGDG for multigroup particle transport DEAL.II Workshop 2015
Radiative transfer in astrophysics Pablo Lucero (IWR) MGDG for multigroup particle transport DEAL.II Workshop 2015
Radiative transfer in climatology Pablo Lucero (IWR) MGDG for multigroup particle transport DEAL.II Workshop 2015
Radiative transfer in neutron and gamma transport Pablo Lucero (IWR) MGDG for multigroup particle transport DEAL.II Workshop 2015
Particle density description Pablo Lucero (IWR) MGDG for multigroup particle transport DEAL.II Workshop 2015
Transport equation Ψ ′ = Ψ( Ω ′ , E ′ , x ) Ω = ( ψ, φ ) Ψ = Ψ( Ω , E , x ) σ s ( Ω ′ , E ′ ) = σ s ( Ω ′ → Ω , E ′ → E , x ) σ T = σ T ( E , x ) q = q ( Ω , E , x ) Transport equation � E max � σ s ( Ω ′ , E ′ ) Ψ ′ d Ω ′ dE ′ = q , Ω · ∇ Ψ + σ T Ψ − 0 S ∀ ( Ω , E , x ) ∈ S × ( 0 , E max ] × D Boundary condition Ψ( Ω , E ) = 0 ∀ ( Ω , E ) ∈ S × ( 0 , E max ] × ∂ D , Ω · n < 0 Pablo Lucero (IWR) MGDG for multigroup particle transport DEAL.II Workshop 2015
Transport equation with fission νσ ′ f = νσ f ( E ′ ) χ = χ ( E ) Transport equation � E max � E max � σ s ( Ω ′ , E ′ ) Ψ ′ d Ω ′ dE ′ − χ f Ψ ′ dE ′ = q νσ ′ Ω · ∇ Ψ + σ T Ψ − 0 S 0 Eigenvalue problem � E max � E max � σ s ( Ω ′ , E ′ ) Ψ ′ d Ω ′ dE ′ = 1 νσ ′ f Ψ ′ dE ′ Ω · ∇ Ψ + σ T Ψ − χ k eff 0 S 0 Pablo Lucero (IWR) MGDG for multigroup particle transport DEAL.II Workshop 2015
Diffusion approximation � � J = J ( E , x ) = Ω Ψ d Ω Φ = Φ( E , x ) = Ψ d Ω S S Ω · ∇ Ψ = ∇ · ( Ω Ψ) = ∇ · J J ≈ − D ( E , x ) ∇ Φ Diffusion equation � E max σ s ( E ′ ) Φ ′ dE ′ = q −∇ · ( D ∇ Φ) + σ T Φ − 0 � E max � E max σ s ( E ′ ) Φ ′ dE ′ − χ f Φ ′ dE ′ = q νσ ′ −∇ · ( D ∇ Φ) + σ T Φ − 0 0 � E max � E max σ s ( E ′ ) Φ ′ dE ′ = 1 νσ ′ f Φ ′ dE ′ −∇ · ( D ∇ Φ) + σ T Φ − χ k eff 0 0 Pablo Lucero (IWR) MGDG for multigroup particle transport DEAL.II Workshop 2015
Angle description Pablo Lucero (IWR) MGDG for multigroup particle transport DEAL.II Workshop 2015
Angle collocation S n � E max � σ s ( Ω ′ , E ′ ) Ψ ′ d Ω ′ dE ′ = q , Ω · ∇ Ψ + σ T Ψ − 0 S Ψ i ′ = Ψ( Ω i ′ , E ′ , x ) Ψ i = Ψ( Ω i , E , x ) s ( E ′ ) = σ s ( Ω i ′ → Ω i , E ′ → E , x ) σ i ′ i q i = q ( Ω i , E , x ) � E max � E max n � σ s ( Ω ′ , E ′ ) Ψ ′ d Ω ′ dE ′ ≈ � ω i ′ σ i ′ i s ( E ′ ) Ψ i ′ dE ′ 0 S 0 i ′ = 1 Pablo Lucero (IWR) MGDG for multigroup particle transport DEAL.II Workshop 2015
Angle collocation S n � E max � σ s ( Ω ′ , E ′ ) Ψ ′ d Ω ′ dE ′ = q , Ω · ∇ Ψ + σ T Ψ − 0 S � E max n s ( E ′ ) Ψ i ′ dE ′ = q 1 � ω i ′ σ i ′ 1 Ω 1 · ∇ Ψ 1 + σ T Ψ 1 − 0 i ′ = 1 ... � E max n s ( E ′ ) Ψ i ′ dE ′ = q i � ω i ′ σ i ′ i Ω i · ∇ Ψ i + σ T Ψ i − 0 i ′ = 1 ... � E max n s ( E ′ ) Ψ i ′ dE ′ = q n � ω i ′ σ i ′ n Ω n · ∇ Ψ n + σ T Ψ n − 0 i ′ = 1 Pablo Lucero (IWR) MGDG for multigroup particle transport DEAL.II Workshop 2015
Multigroup Pablo Lucero (IWR) MGDG for multigroup particle transport DEAL.II Workshop 2015
Multigroup � E max n s ( E ′ ) Ψ i ′ dE ′ = q i , � ω i ′ σ i ′ i Ω i · ∇ Ψ i + σ T Ψ i − 0 i ′ = 1 ( 0 , E max ] = ( 0 , E 1 ] ∪ ... ∪ ( E g − 1 , E g ] ∪ ... ∪ ( E G − 1 , E max ] � E g σ T ( E , x ) dE � E g E g − 1 σ i , g Ψ i , g = Ψ( Ω i , E , x ) dE T = Ψ i , g E g − 1 � E g � E max n � ω i ′ σ i ′ i s ( E ′ ) Ψ i ′ dE ′ dE 0 E g − 1 i ′ = 1 σ i ′ i , g ′ g = s Ψ i , g ′ Pablo Lucero (IWR) MGDG for multigroup particle transport DEAL.II Workshop 2015
Multigroup � E max n s ( E ′ ) Ψ i ′ , g ′ dE ′ = q i , � ω i ′ σ i ′ i Ω i · ∇ Ψ i + σ T Ψ i − 0 i ′ = 1 G n � � ω i ′ σ i ′ i , g ′ 1 Ψ i ′ , g ′ = q i , 1 Ω i · ∇ Ψ i , 1 + σ T , 1 Ψ i , 1 − s g ′ = 1 i ′ = 1 ... G n � � ω i ′ σ i ′ i , g ′ g Ψ i ′ , g ′ = q i , g Ω i · ∇ Ψ i , g + σ T , g Ψ i , g − s g ′ = 1 i ′ = 1 ... G n � � ω i ′ σ i ′ i , g ′ G Ω i · ∇ Ψ i , G + σ T , G Ψ i , G − Ψ i ′ , g ′ = q i , G s g ′ = 1 i ′ = 1 Pablo Lucero (IWR) MGDG for multigroup particle transport DEAL.II Workshop 2015
Discrete angle and energy system i ′ , 1 i ′ , 1 i ′ , 1 1 , 1 ... ... n , 1 1 , 1 ... ... n , 1 1 , 1 ... ... n , 1 i ′ , 1 i ′ , 1 i ′ , 1 ... ... ... ... ... ... ... ... ... ... ... ... i ′ , i i ′ , i i ′ , i 1 , i ... ... n , i ... 1 , i ... ... n , i ... 1 , i ... ... n , i i ′ , 1 i ′ , 1 i ′ , 1 ... ... ... ... ... ... ... ... ... ... ... ... i ′ , 1 i ′ , 1 i ′ , 1 1 , n ... ... n , n 1 , n ... ... n , n 1 , n ... ... n , n 1 , 1 g ′ , 1 G , 1 ... ... ... ... ... i ′ , 1 i ′ , 1 i ′ , 1 1 , 1 ... ... n , 1 1 , 1 ... ... n , 1 1 , 1 ... ... n , 1 i ′ , 1 i ′ , 1 i ′ , 1 ... ... ... ... ... ... ... ... ... ... ... ... i ′ , i i ′ , i i ′ , i 1 , i ... ... n , i ... 1 , i ... ... n , i ... 1 , i ... ... n , i i ′ , 1 i ′ , 1 i ′ , 1 ... ... ... ... ... ... ... ... ... ... ... ... i ′ , 1 i ′ , 1 i ′ , 1 1 , n ... ... n , n 1 , n ... ... n , n 1 , n ... ... n , n g ′ , g 1 , g G , g ... ... ... ... ... i ′ , 1 i ′ , 1 i ′ , 1 1 , 1 ... ... n , 1 1 , 1 ... ... n , 1 1 , 1 ... ... n , 1 i ′ , 1 i ′ , 1 i ′ , 1 ... ... ... ... ... ... ... ... ... ... ... ... i ′ , i i ′ , i i ′ , i 1 , i ... ... n , i ... 1 , i ... ... n , i ... 1 , i ... ... n , i i ′ , 1 i ′ , 1 i ′ , 1 ... ... ... ... ... ... ... ... ... ... ... ... i ′ , 1 i ′ , 1 i ′ , 1 1 , n ... ... n , n 1 , n ... ... n , n 1 , n ... ... n , n 1 , G g ′ , G G , G Pablo Lucero (IWR) MGDG for multigroup particle transport DEAL.II Workshop 2015
Discontinuous Galerkin finite elements G n � � ω i ′ σ i ′ i , g ′ g Ω i · ∇ Ψ i , g ( x ) + σ T , g ( x )Ψ i , g ( x ) − ( x )Ψ i ′ , g ′ ( x ) = q i , g ( x ) s g ′ = 1 i ′ = 1 v ∈ L 2 ( D ) � � � V h = � v | K ∈ P K } := v 1 + v 2 } := v 1 n 1 + v 2 n 2 { { v } { { v n } 2 2 Pablo Lucero (IWR) MGDG for multigroup particle transport DEAL.II Workshop 2015
Discontinuous Galerkin finite elements G n G n � � � � � � ω i ′ σ i ′ i , g ′ g v i , g d x a h ( ψ, v ) = ω i Ω i · ∇ ψ i , g + σ T , g ψ i , g − ψ i ′ , g ′ s K K ∈ T h g = 1 i = 1 g ′ = 1 i ′ = 1 G � � � � + ω i | Ω i · n | ψ i v i d x + b h ( ψ, v ) F g = 1 Ω i · n ≤ 0 F ∈ F b h G n � � � 4 � � � b h ( ψ, v ) = ω i max { 4 , σ s h } | Ω i · n | { { ψ i , g n } }{ { v i , g n } } − 2 Ω i · { { ψ i , g n } }{ { v i , g } } d x F g = 1 i = 1 F ∈ F j h Pablo Lucero (IWR) MGDG for multigroup particle transport DEAL.II Workshop 2015
Multigrid preconditioner with Schwarz smoothers Pablo Lucero (IWR) MGDG for multigroup particle transport DEAL.II Workshop 2015
Source iteration? Coupled D=1e-05 Source Iteration D=1e-05 1e+06 50 1e+06 50 10000 10000 40 40 Frequency redistribution Frequency redistribution 100 100 30 30 1 1 20 20 0.01 0.01 10 10 0.0001 0.0001 1e-06 0 1e-06 0 1e-06 0.0001 0.01 1 100 10000 1e+06 1e-06 0.0001 0.01 1 100 10000 1e+06 Absorption Absorption Pablo Lucero (IWR) MGDG for multigroup particle transport DEAL.II Workshop 2015
Recommend
More recommend