multi objective cooperative coevolutionary algorithms for
play

Multi-objective Cooperative Coevolutionary Algorithms for Robust - PowerPoint PPT Presentation

Multi-objective Cooperative Coevolutionary Algorithms for Robust Scheduling Grgoire Danoy, Bernab Dorronsoro, Pascal Bouvry University of Luxembourg EVOLVE 2011 26/05/0211 Outline Introduction Coevolutionary Genetic


  1. Multi-objective Cooperative Coevolutionary Algorithms for Robust Scheduling Grégoire Danoy, Bernabé Dorronsoro, Pascal Bouvry University of Luxembourg EVOLVE 2011 26/05/0211

  2. Outline • Introduction • Coevolutionary Genetic Algorithms • Multi-Objective Coevolutionary Framework • Application on the RSMP • Conclusion & Perspectives 2

  3. Introduction • Deal with large scale complex multi-objective problems • Where classical EAs tend to perform poorly • Use of cooperative coevolutionary techniques to simultaneously optimize several subproblems • Not popular in multi-objective optimization domain 3

  4. Outline • Introduction • Coevolutionary Genetic Algorithms • Multi-Objective Coevolutionary Framework • Application on the RSMP • Conclusion & Perspectives 4

  5. Rosenbrock Function • Part of De Jong’s five function test suite • Continuous and unimodal with -2.12 ≤ x i ≤ 2.12 • Global minimum with 5

  6. GA on Rosenbrock (4 variables) • A chromosome encodes a complete solution • Solution evaluated on the global problem ,+-./.-')(# 012%3%4%35# 6.7+544# !"!# $%"&# %"'# $%"!# 8 9# 8 :# 8 ;# 8 <# !"#$%&'()*%+# 6

  7. Cooperative Coevolutionary GA (CCGA) • Each node runs a subpopulation for a subset of the N variables • Each population evaluates each of its individuals on the global fitness function using the best individual received from each other subpopulation 9124'&&( !"#$%$&$%'( 3'&2( !"!# .'#/'(012"(3'&2(( 3'&2( 145167(#'8'16'5( !"!# $%"&# %"'# %"!# 3'&2( ) *( ) ,( ) +( ) -( [Po$er, ¡1994] 7

  8. Outline • Introduction • Coevolutionary Genetic Algorithms • Multi-Objective Coevolutionary Framework • Application on the RSMP • Conclusion & Perspectives 8

  9. Multi-Objective CCGA 3'&2( 3'&2( 9124'&&( !"#$%$&$%'( !" .'#/'(012"(3'&2(( 145167(#'8'16'5( #" $" %" &" '" $" :'4'#;2'(<4;=(;#8"16'($>(( !" (" )" !" 4$4?5$%14;2'5(&$=@A$4&( '" )" $" *" %" )" ) *( ) +( ) ,( ) -( 3'&2( 3'&2( F ( x ) 9

  10. Three New Algorithms • Three CCMOEAs designed - Based on NSGA-II: CCNSGAII - Based on SPEA2: CCSPEA2 - Based on MOCell: CCMOCell NSGA-II SPEA2 MOCell • Cellular population • Reference algorithm - Only next individuals • Panmictic population • Panmictic population can interact • External archive • External archive • Selection of solutions - Strength raw fitness - Feedback to - Ranking - k-nearest neighbors - Crowding population 10

  11. Parallelization • Adapta&on ¡for ¡paralleliza&on - No sequential processing of the sub-populations - Remaining synchronization points 11

  12. Outline • Introduction • Coevolutionary Genetic Algorithms • Multi-Objective Coevolutionary Framework • Application on the RSMP • Conclusion & Perspectives 12

  13. Batch Tasks Mapping on Grids • Based on the Estimated Time Task to Compute (ETC) simulation ETC 0 1 2 3 4 5 6 model by Braun et al.* 0 2 5 7 3 9 4 3 Time needed Machine by machine 1 to 1 6 9 8 7 4 3 1 compute task 6 2 7 8 9 5 3 2 5 • An instance of the problem: - A number of independent tasks to be scheduled - A number of heterogeneous machines candidates for scheduling - Ready time ready m : when machine m will finish the previously assigned tasks - The ETC matrix (nb_tasks x nb_machines). ETC [j][m] is the expected execution time of task j in machine m *T.D. Braun, H.J. Siegel, N. Beck, L. Bölöni, M. Maheswaran, A. Reuther, J. Robertson, M. Theys, B. Yao, D. Hensgen, and R. Freund. A comparison of eleven static heuristics for mapping a class of independent tasks onto heterogeneous distributed computing systems, Journal of Parallel and Distributed Computing 61(6):810-837, 2001 13

  14. Multi-objective Robust Mapping on Grids* • Objectives: - Minimize makespan f M ( � x ) = { max { F j ( C ) } - Maximize robustness f R ( � x ) = { min { r � x ( F j , C ) } • Finishing time of machine j : � F j ( C ) = ready j + C t,j • Robustness radius ◆ of machine j : t ∈ S ( j ) ETC τ · M orig − F j ( C orig ) x ( F j , C ) = r � � number of applications allocated to m j (3) • Toleration variation: τ = 30% x : An allocation C : matrix with the actual times to compute the tasks on every machine M orig : Makespan of x according to ETC S(j) : Set of tasks assigned to machine j *B. Dorronsoro, P. Bouvry, J.A. Cañero, A.A. Maciejewski, H.J. Siegel, Multi-objective Robust Static Mapping of Independent Tasks on Grids, IEEE Congress on Evolutionary Computation (CEC), pp. 3389-3396, 2010. ◆ S. Ali, A.A. Maciejewski, H.J. Siegel, and J.-K. Kim, Measuring the Robustness of a Resource Allocation, IEEE Trans. on Parallel and Distributed Systems 15(7), 2004. 14

  15. Parameters Configuration • Individual representation Task 1 Task 2 Task 512 Machine i Machine j Machine k • Two points recombination (p R = 0.9) • Rebalance mutation (p M = 0.2) - Move one task from one of the 25% machines with longest completion time to one of the 25% machines with shortest completion time 15

  16. Problem Instances • Two sizes: Small Large ★ Tasks: 512 ★ Tasks: 2048 ★ Processors: 16 ★ Processors: 64 • Inconsistent: - The fact that machine j is faster than k for task t does not imply that j is faster than k for any task • Two problem classes studied - High task and resource heterogeneity - Low task and resource heterogeneity • We study 10 different instances per problem class - Each instance has a different ETC 16

  17. Performance Evaluation • Three performance metrics Hypervolume; Inverted Generational Distance Accuracy Diversity F2 F2 Spread F1 F1 • The optimal Pareto front is not known - Reference Pareto front built by merging all the Pareto fronts obtained 17

  18. Example of Reference Pareto Front High task and resource heterogeneity Low task and resource heterogeneity 18

  19. Speedup Results hi2048 hi512 hi2048 CCNSGAII, 4 cores CCNSGAII, 4 cores low2048 low512 low2048 CCNSGAII, 8 cores CCNSGAII, 8 cores CCSPEA2, 4 cores CCSPEA2, 4 cores CCSPEA2, 8 cores CCSPEA2, 8 cores CCMOCell, 4 cores CCMOCell, 4 cores CCMOCell, 8 cores CCMOCell, 8 cores 4 8 0 5 10 15 20 4 8 0 10 20 30 40 50 Speedup Speedup Time MOEA Speedup = Time CCMOEA 19

  20. Algorithms Comparison: IGD Small Problem 0.06 0.05 Average Results for IGD Metric 0.04 0.03 0.02 0.01 MOCell CCMOCell � 4CCMOCell � 8 SPEA2 CCSPEA2 � 4CCSPEA2 � 8 NSGAII CCNSGAII � 4CCNSGAII � 8 MOCell CCMOCell � 4CCMOCell � 8 SPEA2 CCSPEA2 � 4CCSPEA2 � 8 NSGAII CCNSGAII � 4CCNSGAII � 8 High Heterogeneity Low Heterogeneity 20

  21. Algorithms Comparison: IGD Big Problem 0.06 0.055 0.05 Average Results for IGD Metric 0.045 0.04 0.035 0.03 0.025 0.02 0.015 0.01 MOCell CCMOCell � 4CCMOCell � 8 SPEA2 CCSPEA2 � 4 CCSPEA2 � 8 NSGAII CCNSGAII � 4CCNSGAII � 8 MOCell CCMOCell � 4CCMOCell � 8 SPEA2 CCSPEA2 � 4 CCSPEA2 � 8 NSGAII CCNSGAII � 4CCNSGAII � 8 High Heterogeneity Low Heterogeneity 21

  22. Outline • Introduction • Coevolutionary Genetic Algorithms • Multi-Objective Coevolutionary Framework • Application on the RSMP • Conclusion & Perspectives 22

  23. Conclusion & Perspectives • Conclusion - Design of generic framework for Cooperative Coevolutionary Multi-objective Evolutionary Algorithms (CCMOEAs) ‣ Accurate ‣ Efficient - Implementation of three new CCMOEAs ‣ Based on NSGA-II, SPEA2, and MOCell - Validate on a real-world problem ‣ Robust Static Mapping of Independent Tasks on Grids (RSMP) • Perspectives - Asynchronous communications between the subpopulations. - Tackle bigger instances of the RSMP problem 23

  24. Thank you for your attention

Recommend


More recommend