molecular modeling used as a molecular modeling used as a
play

Molecular Modeling Used as a Molecular Modeling Used as a Probe of - PowerPoint PPT Presentation

Molecular Modeling Used as a Molecular Modeling Used as a Probe of Interactions to Study the Probe of Interactions to Study the Polymeric Glass Transition Polymeric Glass Transition Armand Soldera Dpartement de Chimie HPCS May 13, 2003


  1. Molecular Modeling Used as a Molecular Modeling Used as a Probe of Interactions to Study the Probe of Interactions to Study the Polymeric Glass Transition Polymeric Glass Transition Armand Soldera Département de Chimie HPCS May 13, 2003

  2. Contents Contents � Tacticity � Simulation of the Amorphous Phase CH 3 � Dilatometric Simulation C CH 2 C � Energetic Analysis O O CH 3 � Local Dynamics n � Cooperativity � Conclusions HPCS May 11-14, 2003

  3. Tacticity CH 3 C CH 2 C O O CH 3 n l d l l l l ISOTACTIC SYNDIOTACTIC T g = 45.3 °C T g = 114 °C Experimental Can we manage such a difference by the use of molecular modeling ? If affirmative � better understanding of the difference � glass transition … HPCS May 11-14, 2003

  4. Simulation of the Amorphous Phase � Design of a cubic box - From the knowledge of the density and the mass of the polymer - All the space is filled by replica of this box RIS � Chain design   −∆ LR exp U RT   η ; i ′ = q q - A propagation procedure (MC) is begun to design ∑ ξη ξη ; i ; i   −∆ LR q exp U RT   1 polymer configuration ′ ′ ξη η ; i ; i η ′ - The chain backbone is grown step by step looking for long range excluded volume � Periodic Boundary Conditions Each atom coming out from one face is automatically entering through the opposite face � Relaxation Procedure MD + minimization HPCS May 11-14, 2003

  5. pcff Force Field: schematic representation connectivity + flexibility cross terms non-bonding terms HPCS May 11-14, 2003

  6. pcff Force Field: mathematical expression ∑ ( ) ( ) ( ) ∑ ( ) ( ) ( )     2 3 4 2 3 4 = − + − + − + θ θ − + θ θ − + θ θ − V K b b K b b K b b H H H     2 0 3 0 4 0 2 0 3 0 4 0 θ b ( ) ( ) ( ) ∑ ∑         + − φ φ − + − φ φ − + − φ φ − + χ 0 0 0 2 V 1 cos V 1 cos 2 V 1 cos 3 K         χ 1 1 2 2 3 3 φ χ ∑∑ ∑∑ ∑∑ ( )( ) ( )( ) ( )( ) + − − + θ θ − θ θ − + − θ θ − F b b b b ' ' F ' ' F b b θθ θ bb ' 0 0 ' 0 0 b 0 0 θ θ b ' ' b θ b ∑∑ [ ] ∑∑ [ ] + − φ + φ + φ + − φ + φ + φ ( b b V ) cos V c os2 V cos3 ( ' b b ' ) V cos V cos2 V cos3 0 1 2 3 0 1 2 3 φ φ b b ' ∑∑ [ ] ∑∑∑ ( )( ) + θ θ − φ + φ + φ + φ θ θ − θ θ − ( ) V cos V cos2 V cos3 K cos ' ' φθθ 0 1 2 3 ' 0 0 θ φ φ θ θ '   qq A B ∑ ∑ i j ij ij + + −   ε 9 6 r r r     > > i j i j ij ij ij HPCS May 11-14, 2003

  7. Dilatometric Simulation NPT ensemble Number of RU: 100 12 hours in SGI O2000 / Simulation time: 110 ps by data data force field: pcff 1.08 Simulated ∆ T g = 55 °C T g sy ndio = 212 °C Expected ∆ T g = 69 °C Specific Volume /cm 3 .g -1 1.04 1.00 Syndiotactic PMMA 0.96 Isotactic PMMA Investigations to understand 0.92 such a difference T g iso = 157 °C can be carried out 0.88 -50 0 50 100 150 200 250 300 Temperature /°C HPCS May 11-14, 2003

  8. Energetic Analysis � Principles - The 2 PMMA configurations have the same force field parameters - Changes in their molecular behavior will be directly linked to changes in their molecular characteristics Energy differences � Total Energy E(Iso)-E(Syndio)=10 kcal.mol -1 3 splits will be performed 1. Inter and intramolecular contributions 2. Inside the intramolecular part 3. Molecular contribution HPCS May 11-14, 2003

  9. Splits in the Energy Contributions 1) Total energy Intermolecular & Intramolecular 45 (±8) -35 (±8) Flexibility Connection • Lennard-Jones   A B ∑ ij ij −   m p r r     > i j ij ij ∑ ( ) • electrostatic 2 − [ ] K R R ( ) q q ∑ ∑ ( ) ∑ R 0 2 − φ − φ 0 i j θ − θ K θ R 1 cos n n n R 0 j ε r stretching φ θ > ij i bending torsion 2) Intramolecular Energy 75 (±10) 15 (±7) 15 (±5) CH 2 θ θ ' Syndiotactic: 126.7° (±0.1) 3) Bending Energy α C Isotactic: 127.8° (±0.1) H 3 C C OCH 3 O HPCS May 11-14, 2003

  10. T g Determination of PMA H 1,08 H C Isotactic C 1,04 θ ' -1 ) difference Syndiotactic 3 .g C C with PMMA 1,00 Specific Volume (cm H C 0,96 OCH 3 O 0,92 0,88 0,84 -100 -50 0 50 100 150 200 250 300 350 Temperature (°C) No differences In T g s ( ) ( ) ( ) between the 2 PMA < − < − T PM A T I PM M A T S PM M A g g g configurations, in agreement with experimental data HPCS May 11-14, 2003

  11. Energetic Analysis - Comparisons to PMA data - � Intermolecular energy differences ( ) ( ) ( ) − > − >> E S PM M A E I PM M A E PM A inter inter inter 350 − 258 − 78 − 1 1 1 kcal mol . kcal mol . kcal mol . � Intramolecular energy differences In the bending term associated with the intra-diad angle, θ ’ ( ) ( ) ( ) θ − > θ − >> θ ' I PMMA ' S PMMA ' PMA ° ° ° 127 8 . 126 7 . 118 0 . � Conclusions - Results are in agreement with the Free Volume Theory Higher interactions between neighboring polymer chains segments will give a higher T g Due to a greater aperture of θ ’, the isotactic chains should be more mobile - Study of the local dynamics HPCS May 11-14, 2003

  12. Local Dynamics Analysis - Principles - P 2 Libration motions 1.0 � Computation of the orientation function P 2 ( ) ( ) ( ) 2 0.9 ⋅ − - From MD, acquisition of the bond autocorrelation 3 u t u 0 1 ( ) ( ) ( ) = P function t ⋅ u u 0 2 0.8 2 - Computation of the 2nd Legendre polynomial term 0.7 with respect to time, P 2 (t) 0.6  β  exp −    t    � Computation of the correlation time, τ c 0.5   τ     - Fit of P 2 (t) with a stretching exponential, KWW 0.4 0 100 200 300 400 500 t (ps)    τ Γ 1 ∞ ( ) ∫ τ c = τ c =  P t dt 2 β β   0 1 .0 0 .9 430 K 0 .8 � Procedure is carried out at different 0 .7 450 K temperatures 490 K 0 .6 0 .5 510 K P 2 0 .4 540 K 0 .3 � Fit with a VFT equation (or WLF) 580 K 0 .2   B 600 K ( ) 0 .1 τ T = A exp   0 .0 −   T T o 0 2 0 0 4 0 0 6 0 0 8 0 0 t /ps HPCS May 11-14, 2003

  13. Local Dynamics of the Backbone � Fit 10 2 10 1 CH 3 H 10 0 B 10 -1 (kJ.mol -1 ) 10 -2 C C 10 -3 11.9 τ c (s) Experimental Syndiotactic 10 -4 H C O 10 -5 12.8 10 -6 O CH 3 10 -7 10 -8 Isotactic 10 -9 10 -10 1.6 1.8 2.0 2.2 2.4 2.6 1000/T (K -1 ) � Results 100 10 1 Behavior of the 2 isomers 0,1 0,01 - at T+T g : Comparable 1E-3 τ c (s) 1E-4 - at T: Different 1E-5 1E-6 1E-7 1E-8 1E-9 Study of the relaxation of the side chain 1E-10 0,7 0,8 0,9 1,0 1,1 T /T g HPCS May 11-14, 2003

  14. Local Dynamics of the Side-Chain � Fit 2 1 0 1 1 0 H CH 3 0 1 0 -1 1 0 B -2 1 0 C C (kJ.mol -1 ) -3 τ c (ps) 1 0 -4 1 0 Syndiotactic Experimental 11.5 H C O -5 1 0 -6 1 0 5 -7 1 0 O CH 3 -8 1 0 -9 1 0 Isotactic -10 1 0 -11 1 0 1 .6 1 .8 2 .0 2 .2 2 .4 2 .6 1000/T (K) � Results - Non-Arrhenian behavior, but such a relaxation corresponds to the β mode - BUT, the simulation takes into account 3 motions: » librational modes » due to the side-chain (what we are interested in) » due to the backbone HPCS May 11-14, 2003

  15. Mobility of the side-chain � Number of transitions of the side-chain Computation of the number of transitions between the UP and DOWN states of C=O 9,0 -1 8,5 E a =7 kJ mol Isotactic 8,0 -1 ) ln(flip /ns 7,5 7,0 -1 E a =11 kJ mol 6,5 6,0 Syndiotactic 5,5 5,0 0,70 0,75 0,80 0,85 0,90 0,95 1,00 1,05 T g /T The behavior is Arrhenian like ! HPCS May 11-14, 2003

  16. Compilation of the Results � Correlation times - Backbone » Behavior of τ c (C-H) is in agreement with published results: correlation times of iso PMMA are found inferior to the syndio PMMA ones » The backbones of the 2 configurations present the same behavior at T + T g , therefore the difference in T g s could not be explained - Side-Chain » The side-chains of Iso-PMMA show a greater mobility than the syndio ones » Behind this difference there lies a possible explanation of the difference in T g s � Comparison with experimental data - From NMR experiments: compared with PEMA, PMMA showed that the greatest mobility of the side-chains induces a decrease of the lowest correlation time of the backbone - Consequently, a higher side-chain rotation of iso PMMA generates a greater mobility of the backbone, and a greater mobility of the backbone explains a lower T g T g (i-PMMA) < T g (s-PMMA) HPCS May 11-14, 2003

Recommend


More recommend