mohr s circle
play

Mohrs Circle Lecture 2 ME EN 372 Andrew Ning aning@byu.edu - PDF document

Mohrs Circle Lecture 2 ME EN 372 Andrew Ning aning@byu.edu Outline Material Properties Plane Stress Transformation Material Properties Isotropic materials: 2 constants to define. E : modulus of elasticity, or Youngs modulus :


  1. Mohr’s Circle Lecture 2 ME EN 372 Andrew Ning aning@byu.edu Outline Material Properties Plane Stress Transformation

  2. Material Properties Isotropic materials: 2 constants to define. E : modulus of elasticity, or Young’s modulus ν : Poisson’s ratio. Recall: E G ≡ 2(1 + ν )

  3. What is the modulus of elasticity? Stress-strain curve u y f e p σ (stress) � (strain)

  4. Stress-strain curve u y f e p E σ (stress) � (strain) Stress-strain curve u σ u , S u y f σ y , S y e p E σ (stress) � (strain)

  5. When stress levels rise, when distress appears, when tragedy strikes, too often we attempt to keep up the same frantic pace or even accelerate, thinking somehow that the more rushed our pace, the better off we will be... The wise...follow the advice “There is more to life than increasing its speed.” In short, they focus on the things that matter most... we learn over and over again the importance of four key relationships: with our God, with our families, with our fellowman, and with ourselves. – President Dieter F. Uchtdorf (Of Things That Matter Most) Boeing 777 Wing Test: https://youtu.be/Ai2HmvAXcU0

  6. What is Poisson’s ratio? What is the shear modulus of elasticity?

  7. Plane Stress Transformation

  8. Derive an expression for σ in terms of σ x , σ y , τ xy . σ = σ x cos 2 φ + σ y sin 2 φ + 2 τ xy sin φ cos φ τ = ( σ y − σ x ) sin φ cos φ + τ xy (cos 2 φ − sin 2 φ )

  9. Using a few trig identities, just for convenience later... � σ x + σ y � � σ x − σ y � σ = + cos 2 φ + τ xy sin 2 φ 2 2 � σ x − σ y � τ = − sin 2 φ + τ xy cos 2 φ 2 Principal Stresses φ P = 1 2 τ xy 2 tan − 1 ( σ x − σ y )

  10. �� σ x − σ y � 2 σ 1 , σ 2 = σ x + σ y + τ 2 ± xy 2 2 τ = 0 The angles for maximum shear stress are ± 45 ◦ from the principal stresses. �� σ x − σ y � 2 τ 1 , τ 2 = ± + τ 2 xy 2 σ = σ x + σ y 2

  11. Mohr’s Circle C = σ avg = ( σ x + σ y ) 2 �� σ x − σ y � 2 R = + τ 2 xy 2 3D Mohr’s Circle Even in a biaxial stress state, remember that the stress state is actually three-dimensional. This is especially important for computing the maximum shear stress.

Recommend


More recommend