moduli spaces of cold holographic matter
play

Moduli spaces of cold holographic matter Jo ao N. Laia in - PowerPoint PPT Presentation

Introduction Technique Conclusions Moduli spaces of cold holographic matter Jo ao N. Laia in collaboration with Martin Ammon, Kristan Jensen, Keun-Young Kim and Andy OBannon based on arXiv:1208.3197 October 2, 2012 Jo ao N. Laia


  1. Introduction Technique Conclusions Moduli spaces of cold holographic matter Jo˜ ao N. Laia in collaboration with Martin Ammon, Kristan Jensen, Keun-Young Kim and Andy O’Bannon based on arXiv:1208.3197 October 2, 2012 Jo˜ ao N. Laia Moduli spaces of cold holographic matter

  2. Introduction Technique Conclusions Outline 1 Introduction Motivation Moduli spaces Results 2 Technique D3/D7 D3/D5 3 Conclusions Summary Future directions Speculation Jo˜ ao N. Laia Moduli spaces of cold holographic matter

  3. Introduction Motivation Technique Moduli spaces Conclusions Results Motivation Holography Duality between String Theory in d+1 dimensions and Quantum Field Theory in d-dimensions Why are we using holography? Different way of thinking about quantum systems: new understanding; Strongly coupled quantum systems are hard to describe with standard methods. Two different approaches bottom-up; top-down. Jo˜ ao N. Laia Moduli spaces of cold holographic matter

  4. Introduction Motivation Technique Moduli spaces Conclusions Results Deconstructing the title Cold holographic matter Cold: zero temperature Holographic matter: compressible states from holography Compressible states charge density smooth with chemical potential turn on gauge field component A t Examples in nature superfluids solids fermi liquids Jo˜ ao N. Laia Moduli spaces of cold holographic matter

  5. Introduction Motivation Technique Moduli spaces Conclusions Results Moduli spaces We study moduli spaces of cold holographic matter What is a moduli space? Geometric space in which points are objects of a certain kind Instanton moduli space each point of the manifold is a different solution to the self dual equations Moduli space of vacua (in a field theory) each point is a possible ground state String theory connects them Jo˜ ao N. Laia Moduli spaces of cold holographic matter

  6. Introduction Motivation Technique Moduli spaces Conclusions Results Moduli space of vacua Consider N = 4, SU ( N c ) gauge theory with N = 2 matter N = 4 vector multiplet (contains Φ 1 , Φ 2 , Φ 3 − → N c × N c matrices) N f ≪ N c fundamental hypermultiplets of N = 2 Q i , Q i − (contain ˜ → N c -legged vectors, i = 1 , . . . , N f ) Superpotential is Q i Φ 3 Q i + Tr( ǫ IJK Φ I Φ J Φ K ) W = ˜ Minimize it! Coulomb branch: Q i = 0 = ˜ Q i , Φ 1 , Φ 2 , Φ 3 mutually commuting Higgs branch: Q i , ˜ Q i nonzero, Φ 3 = 0 Jo˜ ao N. Laia Moduli spaces of cold holographic matter

  7. Introduction Motivation Technique Moduli spaces Conclusions Results Moduli space of vacua - brane perspective Gauge theory content Φ 1 , Φ 2 , Φ 3 from 3-3 strings Q i , Q i from 3-7 strings ˜ Higgs branch Coulomb branch Jo˜ ao N. Laia Moduli spaces of cold holographic matter

  8. Introduction Motivation Technique Moduli spaces Conclusions Results Probe branes Probe approximation ( N c ≫ N f ) can be summarized as [Erdmenger, Evans, Kirsch, Threlfall ’07] In probe approximation � S = S D 7 + T 7 P [ C 4 ] ∧ F ∧ F Instanton on D 7 − → sources � P [ C 4 ] as if it was a D 3 Higgs branch ≡ instanton moduli space Jo˜ ao N. Laia Moduli spaces of cold holographic matter

  9. Introduction Motivation Technique Moduli spaces Conclusions Results What we have done We have studied the Higgs branch in 4ND probe systems, with N f = 1 x 0 x 1 x 2 x 3 x 4 x 5 x 6 x 7 x 8 x 9 D3 X X X X D7 X X X X X X X X x 0 x 1 x 2 x 3 x 4 x 5 x 6 x 7 x 8 x 9 D3 X X X X D5 X X X X X X x 0 x 1 x 2 x 3 x 4 x 5 x 6 x 7 x 8 x 9 D3 X X X X D3 ′ X X X X Jo˜ ao N. Laia Moduli spaces of cold holographic matter

  10. Introduction Motivation Technique Moduli spaces Conclusions Results Probe branes We’ll always assume N c ≫ N f (probe approximation); N f = 1 D 3 leave stack in small numbers: N c − 1 ∼ N c (background unchanged) non zero baryon density, zero temperature: cold holographic matter Jo˜ ao N. Laia Moduli spaces of cold holographic matter

  11. Introduction Motivation Technique Moduli spaces Conclusions Results Findings It is known that gauge theory dual to D3/D7 has no moduli space of vacua (when N f = 1) gauge theories dual to D3/D5 and D3/D3 have a moduli space We will see that, with non zero baryon density moduli space emerges in dual to D3/D7 moduli space still exists in duals to D3/D5 [Chang, Karch ’12] and D3/D3 Jo˜ ao N. Laia Moduli spaces of cold holographic matter

  12. Introduction Motivation Technique Moduli spaces Conclusions Results Outline 1 Introduction Motivation Moduli spaces Results 2 Technique D3/D7 D3/D5 3 Conclusions Summary Future directions Speculation Jo˜ ao N. Laia Moduli spaces of cold holographic matter

  13. Introduction D3/D7 Technique D3/D5 Conclusions The D3 background Consider a stack of N c D3s x 0 x 1 x 2 x 3 x 4 x 5 x 6 x 7 x 8 x 9 D3 X X X X Low energy physics is N = 4 SYM with SU ( N c ) gauge group. Describe this brane using holography N c → ∞ , g YM → 0, λ = g 2 YM N c fixed λ → ∞ The background is ( R 4 = 4 π g s N c α ′ 2 ) ds 2 = Z − 1 / 2 η µν dx µ dx ν + Z 1 / 2 � dr 2 + r 2 ds 2 Z ( r ) ≡ R 4 / r 4 , � , S 5 F 5 = 4 R ( vol AdS 5 + vol S 5 ) , F 5 = dC 4 Jo˜ ao N. Laia Moduli spaces of cold holographic matter

  14. Introduction D3/D7 Technique D3/D5 Conclusions D7 probe We probe this system with a D7 x 0 x 1 x 2 x 3 x 4 x 5 x 6 x 7 x 8 x 9 D3 X X X X D7 X X X X X X X X The low energy description is N = 4 SYM with gauge group SU ( N c ), together with N = 2 fundamental matter. Dual is D7 in the D3 background det( − P [ G ] ab + F ab ) + 1 � � d 8 ξ � S 7 = − T 7 P [ C 4 ] ∧ F ∧ F . 2 T 7 Ansatz A ( ξ ) = A 0 ( z ) dx 0 + A i ( z ) dz i , ( z 1 , z 2 , z 3 , z 4 ) = ( x 4 , x 5 , x 6 , x 7 ) Jo˜ ao N. Laia Moduli spaces of cold holographic matter

  15. Introduction D3/D7 Technique D3/D5 Conclusions D7 probe Recall: what we will show is the existence of a moduli space On shell action the same for different configurations No dependence on the field theory coordinates integrate them Write the action as an action in 4d ( z 1 , z 2 , z 3 , z 4 ) � �� det( g ij + Z − 1 / 2 f ij ) − 1 � d 4 z 8 Z − 1 ˜ ǫ ijkl f ij f kl s 7 = − T 7 , g ij is an effective metric. [Chen, Hashimoto, Matsuura ’09] g ij ≡ δ ij − ∂ i A 0 ∂ j A 0 , f ij ≡ ∂ i A j − ∂ j A i . Jo˜ ao N. Laia Moduli spaces of cold holographic matter

  16. Introduction D3/D7 Technique D3/D5 Conclusions The most important formula of the presentation For general 4 × 4 symmetric G and antisymmetric F det G ij + 1 � � � � ǫ ijkl F ij F kl det ( G ij + F ij ) ≥ � ˜ � � 8 � [Gibbons, Hashimoto ’00] Inequality saturated for self dual F with respect to metric G F ij = ± 1 ǫ ijkl ≡ ˜ 2 ǫ ijkl F kl , ǫ ijkl / � det G ij . uses the fact that G and F are 4 × 4 matrices: will be useful for 4ND systems useless for non 4 ND systems. No moduli spaces there. Next step Use this to show the existence of degenerate ground states: moduli space! Jo˜ ao N. Laia Moduli spaces of cold holographic matter

  17. Introduction D3/D7 Technique D3/D5 Conclusions Back to our setting Our action is reduced to � �� det g ij + 1 �� 8 Z − 1 � d 4 z ǫ ijkl f ij f kl | − ˜ ǫ ijkl f ij f kl s 7 ≤ − T 7 | ˜ . bound saturated for self dual f wrt effective metric g self dual f extremizes action − → solves equation of motion self dual f maximizes action − → minimizes Helmholtz free energy � d 4 z � s 7 = − T 7 det g ij , Recall: g ij ≡ δ ij − ∂ i A 0 ∂ j A 0 Interpretation � � F ∧ F is a number − → D3 brane charge in the D7, sources P [ C 4 ] Jo˜ ao N. Laia Moduli spaces of cold holographic matter

  18. Introduction D3/D7 Technique D3/D5 Conclusions Recipe f ij out of the action is very convenient Makes it very easy to get solutions To get explicit solutions solve electrostatic problem. Get A 0 ( z ) A 0 ( z ) defines the effective metric get A i ( z ) from self dual equations In particular, vacuum energy independent of f ij (as it should...) But, don’t forget The moduli space exists only if we find normalizable solutions Jo˜ ao N. Laia Moduli spaces of cold holographic matter

  19. Introduction D3/D7 Technique D3/D5 Conclusions Example The purpose of the example Show you why there is no moduli space at zero density Show you what happens when we turn on the density Possible A 0 ( z ) that describes a compressible state is 1 ρ 6 A ′ 0 ( ρ ) = , 0 related to density � 1 + ρ 6 /ρ 6 0 ρ is the radial coordinate (boundary at ρ → ∞ ) solves equations of motion Effective metric is then ρ 6 g ij dz i dz j = d ρ 2 + ρ 2 ds 2 S 3 . ρ 6 + ρ 6 0 Jo˜ ao N. Laia Moduli spaces of cold holographic matter

  20. Introduction D3/D7 Technique D3/D5 Conclusions Effective metric ρ 6 g ij dz i dz j = d ρ 2 + ρ 2 ds 2 S 3 . ρ 6 + ρ 6 0 Metric is conformally flat g ij dz i dz j = Ω(¯ ρ 2 + ¯ � 1 / 3 ρ ) 2 � ρ 2 ds 2 1 − ρ 6 ρ 6 ) � � d ¯ , Ω(¯ ρ ) = 0 / (4¯ S 3 ρ ∈ [2 − 1 / 3 ρ 0 , ∞ ) Range of new coordinate is ¯ Solve self dual equation in this background f ij = 1 2 ǫ ijkl f kl it is conformal − → solve it in flat space ρ ∈ [2 − 1 / 3 ρ 0 , ∞ ) range of radius is ¯ Effectively Non zero density is the same as zero density, but with ball excised Jo˜ ao N. Laia Moduli spaces of cold holographic matter

Recommend


More recommend