Modeling Conventions J-R. Abrial September 2004
Structure of a Model - List of Sets (identifiers) - List of Constants (identifiers) - List of Properties (predicates built on sets and constants) - List of Variables (identifiers) - List of Invariants (predicates built on sets, constants, and variables) - List of Events (next slide) 1
Shape of an Event = < name > � when < guard > . . . then < assignment > . . . end 2
Assignments < variable > := < expression > Deterministic Non-deterministic any where < variable > < condition > . . . then < variable > := < expression > . . . end 3
Set Theory (1) ∈ set membership operator set of Natural Numbers: { 0 , 1 , 2 , 3 , . . . } N interval from a to b : { a, a + 1 , . . . , b } a .. b S → T set of total functions from S to T S � → T set of partial functions from S to T 4
Set Theory (2) �→ pair constructing operator { . . . } set defined in extension empty set ∅ 5
Set Theory (3) F 1 ( S ) Non-empty set of finite subsets of S F ( S ) Set of finite subsets of S P 1 ( S ) Non-empty set of subsets of S P ( S ) Set of subsets of S max ( S ) Maximum of a non-empty finite set of numbers 6
Set Theory (4) set of bijections from S to T S ։ T S × T Cartesian product of S and T − g overwriting operator for functions f ✁ 7
Set Theory (5) dom domain of a function ran range of a function domain restriction operator ✁ − domain subtraction operator ✁ id ( S ) identity function built on the set S 8
Set Theory (6) S ∪ T set-theoretic union operator S ∩ T set-theoretic intersection operator S \ T set-theoretic difference operator f − 1 converse of a function f [ S ] image of a set under a function 9
A Small Theory of Parities Constant: pty pty ∈ N → { 0 , 1 } pty (0) = 0 ∀ n · ( n ∈ N ⇒ pty ( n + 1) = 1 − pty ( n )) x ∈ N y ∈ N x ∈ y .. y + 1 ∀ x, y · pty ( x ) = pty ( y ) ⇒ x = y 10
A Small Theory of Rings Set: N Constants: nxt , itv nxt ∈ N ։ N itv ∈ N × N → P ( N ) ∀ x · ( x ∈ N ⇒ itv ( x, x ) = { x } ) x ∈ N y ∈ N ∀ x, y · x � = nxt ( y ) ⇒ itv ( x, nxt ( y )) = itv ( x, y ) ∪ { nxt ( y ) } ) ∀ x · ( x ∈ N ⇒ itv ( nxt ( x ) , x ) = N ) 11
A Small Theory of Trees Set: N Constants: r , f r ∈ N f ∈ N \ { r } → N S ⊆ N r ∈ S f − 1 [ S ] ⊆ S ∀ S · ⇒ N ⊆ S 12
Recommend
More recommend