minors and tutte invariants for alternating dimaps
play

Minors and Tutte invariants for alternating dimaps Graham Farr - PowerPoint PPT Presentation

Minors and Tutte invariants for alternating dimaps Graham Farr Clayton School of IT Monash University Graham.Farr@monash.edu Work done partly at: Isaac Newton Institute for Mathematical Sciences (Combinatorics and Statistical Mechanics


  1. Minors and Tutte invariants for alternating dimaps Graham Farr Clayton School of IT Monash University Graham.Farr@monash.edu Work done partly at: Isaac Newton Institute for Mathematical Sciences (Combinatorics and Statistical Mechanics Programme), Cambridge, 2008; University of Melbourne (sabbatical), 2011; and Queen Mary, University of London, 2011. 20 March 2014

  2. Contraction and Deletion G e u v G / e G \ e u = v u v

  3. Minors H is a minor of G if it can be obtained from G by some sequence of deletions and/or contractions. The order doesn’t matter. Deletion and contraction commute : G / e / f = G / f / e G \ e \ f G \ f \ e = G / e \ f = G \ f / e

  4. Minors H is a minor of G if it can be obtained from G by some sequence of deletions and/or contractions. The order doesn’t matter. Deletion and contraction commute : G / e / f = G / f / e G \ e \ f G \ f \ e = G / e \ f = G \ f / e Importance of minors: ◮ excluded minor characterisations ◮ planar graphs (Kuratowski, 1930; Wagner, 1937) ◮ graphs, among matroids (Tutte, PhD thesis, 1948) ◮ Robertson-Seymour Theorem (1985–2004) ◮ counting ◮ Tutte-Whitney polynomial family

  5. Duality and minors Classical duality for embedded graphs: G ∗ G ← → vertices ← → faces

  6. Duality and minors Classical duality for embedded graphs: G ∗ G ← → vertices ← → faces contraction ← → deletion G ∗ \ e ( G / e ) ∗ = ( G \ e ) ∗ G ∗ / e =

  7. Duality and minors G G \ e G / e

  8. Duality and minors G ∗ G G \ e G / e

  9. Duality and minors G ∗ G G ∗ \ e G \ e G ∗ / e G / e

  10. Duality and minors G ∗ G G ∗ \ e G \ e G ∗ / e G / e

  11. Loops and coloops loop coloop = bridge = isthmus

  12. Loops and coloops loop coloop = bridge = isthmus duality

  13. History H. E. Dudeney, Puzzling Times at Solvamhall Castle: Lady Isabel’s Casket, London Magazine 7 (42) (Jan 1902) 584

  14. History London Magazine 8 (43) (Feb 1902) 56

  15. History First published by Heinemann, London, 1907. Above is from 4th edn, Nelson, 1932.

  16. History Duke Math. J. 7 (1940) 312–340.

  17. History from a design for a proposed memorial to Tutte in Newmarket, UK. https://www.facebook.com/billtutte

  18. History Proc. Cambridge Philos. Soc. 44 (1948) 463–482.

  19. triad of alternating dimaps

  20. triad of alternating dimaps

  21. bicubic map

  22. bicubic map

  23. Alternating dimaps Alternating dimap (Tutte, 1948): ◮ directed graph without isolated vertices, ◮ 2-cell embedded in a disjoint union of orientable 2-manifolds, ◮ each vertex has even degree, ◮ ∀ v : edges incident with v are directed alternately into, and out of, v (as you go around v ).

  24. Alternating dimaps Alternating dimap (Tutte, 1948): ◮ directed graph without isolated vertices, ◮ 2-cell embedded in a disjoint union of orientable 2-manifolds, ◮ each vertex has even degree, ◮ ∀ v : edges incident with v are directed alternately into, and out of, v (as you go around v ). So vertices look like this:

  25. Alternating dimaps Alternating dimap (Tutte, 1948): ◮ directed graph without isolated vertices, ◮ 2-cell embedded in a disjoint union of orientable 2-manifolds, ◮ each vertex has even degree, ◮ ∀ v : edges incident with v are directed alternately into, and out of, v (as you go around v ). So vertices look like this: Genus γ ( G ) of an alternating dimap G : V − E + F = 2( k ( G ) − γ ( G ))

  26. Alternating dimaps Three special partitions of E ( G ): • clockwise faces • anticlockwise faces • in-stars (An in-star is the set of all edges going into some vertex.)

  27. Alternating dimaps Three special partitions of E ( G ): • clockwise faces • anticlockwise faces • in-stars (An in-star is the set of all edges going into some vertex.) Each defines a permutation of E ( G ).

  28. Alternating dimaps Three special partitions of E ( G ): • clockwise faces σ c • anticlockwise faces σ a • in-stars σ i (An in-star is the set of all edges going into some vertex.) Each defines a permutation of E ( G ).

  29. Alternating dimaps Three special partitions of E ( G ): • clockwise faces σ c • anticlockwise faces σ a • in-stars σ i (An in-star is the set of all edges going into some vertex.) Each defines a permutation of E ( G ). These permutations satisfy σ i σ c σ a = 1

  30. Triality (Trinity) Construction of trial map: clockwise faces − → vertices − → anticlockwise faces − → clockwise faces

  31. Triality (Trinity) Construction of trial map: clockwise faces − → vertices − → anticlockwise faces − → clockwise faces �→ ( σ i , σ c , σ a ) ( σ c , σ a , σ i )

  32. Triality (Trinity) Construction of trial map: clockwise faces − → vertices − → anticlockwise faces − → clockwise faces �→ ( σ i , σ c , σ a ) ( σ c , σ a , σ i ) e f u

  33. Triality (Trinity) Construction of trial map: clockwise faces − → vertices − → anticlockwise faces − → clockwise faces �→ ( σ i , σ c , σ a ) ( σ c , σ a , σ i ) e f e ω v C 1 v C 2 u

  34. Minor operations u e G v w 1 w 2

  35. Minor operations u = v G [1] e w 1 w 2

  36. Minor operations u e G v w 1 w 2

  37. Minor operations u G [ ω ] e v w 1 w 2

  38. Minor operations u e G v w 1 w 2

  39. Minor operations u G [ ω 2 ] e v w 1 w 2

  40. Minor operations u e G v w 1 w 2

  41. Minor operations u e G e ω v w 1 w 2

  42. Minor operations u = v G [1] e w 1 w 2

  43. Minor operations u = v ( G [1] e ) ω = G ω [ ω 2 ] e ω w 1 w 2

  44. Minor operations G ω [1] e ω = ( G [ ω ] e ) ω , ( G [ ω 2 ] e ) ω , G ω [ ω ] e ω = G ω [ ω 2 ] e ω = ( G [1] e ) ω , G ω 2 [1] e ω 2 ( G [ ω 2 ] e ) ω 2 , = G ω 2 [ ω ] e ω 2 ( G [1] e ) ω 2 , = G ω 2 [ ω 2 ] e ω 2 ( G [ ω ] e ) ω 2 . = Theorem If e ∈ E ( G ) and µ, ν ∈ { 1 , ω, ω 2 } then G µ [ ν ] e ω = ( G [ µν ] e ) µ . Same pattern as established for other generalised minor operations (GF, 2008/2013. . . ).

  45. Minor operations G ω 2 G G ω G ω 2 [ ω 2 ] e G [ ω 2 ] e G ω [ ω 2 ] e G ω 2 [ ω ] e G [ ω ] e G ω [ ω ] e G ω 2 [1] e G [1] e G ω [1] e

  46. Minors: bicubic maps e

  47. Minors: bicubic maps e reduce e

  48. Minors: bicubic maps e reduce e

  49. Minors: bicubic maps e reduce e Tutte, Philips Res. Repts 30 (1975) 205–219.

  50. Relationships triangulated triangle � alternating dimaps � bicubic map (reduction: Tutte 1975) � duality Eulerian triangulation

  51. Relationships triangulated triangle � alternating dimaps � bicubic map (reduction: Tutte 1975) � duality Eulerian triangulation (reduction, in inverse form . . . : Batagelj, 1989)

  52. Relationships triangulated triangle � alternating dimaps � bicubic map (reduction: Tutte 1975) � duality Eulerian triangulation (reduction, in inverse form . . . : Batagelj, 1989) � (Cavenagh & Lisonˇ eck, 2008) spherical latin bitrade

  53. Ultraloops, triloops, semiloops ultraloop

  54. Ultraloops, triloops, semiloops ultraloop 1-loop

  55. Ultraloops, triloops, semiloops ω -loop ultraloop 1-loop

  56. Ultraloops, triloops, semiloops ω -loop ultraloop 1-loop ω 2 -loop

  57. Ultraloops, triloops, semiloops ω -loop ultraloop 1-loop ω 2 -loop

  58. Ultraloops, triloops, semiloops ω -loop ultraloop 1-loop ω 2 -loop

  59. Ultraloops, triloops, semiloops ω -loop ultraloop 1-loop ω 2 -loop

  60. Ultraloops, triloops, semiloops ω -loop 1-semiloop ultraloop 1-loop ω 2 -loop

  61. Ultraloops, triloops, semiloops ω -loop 1-semiloop ultraloop 1-loop ω 2 -loop ω -semiloop

  62. Ultraloops, triloops, semiloops ω 2 -semiloop ω -loop 1-semiloop ultraloop 1-loop ω 2 -loop ω -semiloop

  63. Ultraloops, triloops, semiloops ω 2 -semiloop ω -loop 1-semiloop ultraloop 1-loop ω 2 -loop ω -semiloop

  64. Ultraloops, triloops, semiloops ω 2 -semiloop ω -loop 1-semiloop ultraloop 1-loop ω 2 -loop ω -semiloop

  65. Ultraloops, triloops, semiloops ω 2 -semiloop ω -loop 1-semiloop ultraloop 1-loop ω 2 -loop ω -semiloop

  66. Ultraloops, triloops, semiloops: the bicubic map trihedron (ultraloop) e

  67. Ultraloops, triloops, semiloops: the bicubic map digon trihedron (ultraloop) (triloop) e e

  68. Ultraloops, triloops, semiloops: the bicubic map digon trihedron (ultraloop) (triloop) (semiloop) e e e

  69. Non-commutativity Some bad news: sometimes, G [ µ ] e [ ν ] f � = G [ ν ] f [ µ ] e

  70. f e G

  71. f e G G [ ω ] f [1] e

  72. f e G G [ ω ] f [1] e G [1] e [ ω ] f

Recommend


More recommend