minimization principles in human motions the inverse
play

Minimization principles in human motions: the inverse optimal - PowerPoint PPT Presentation

Minimization principles in human motions: the inverse optimal control approach Fr ed eric Jean ENSTA ParisTech, Paris (and Team GECO, INRIA Saclay) PICOF 12 Ecole Polytechnique, April 24, 2012 F. Jean (ENSTA ParisTech) Inverse


  1. Minimization principles in human motions: the inverse optimal control approach Fr´ ed´ eric Jean ENSTA ParisTech, Paris (and Team GECO, INRIA Saclay) PICOF ’12 Ecole Polytechnique, April 2–4, 2012 F. Jean (ENSTA ParisTech) Inverse optimal control PICOF ’12 1 / 34

  2. Inverse optimal control Outline Inverse optimal control 1 Arm pointing motions 2 Modelling Necessary and sufficient conditions for inactivation Validation/Simulations Goal oriented human locomotion 3 Modelling Analysis of the direct problem Locomotion depends only on ˙ θ F. Jean (ENSTA ParisTech) Inverse optimal control PICOF ’12 2 / 34

  3. Inverse optimal control Inverse optimal control Analysis/modelling of human motor control → looking for optimality principles Subjects under study: Arm pointing motions Goal oriented human locomotion Saccadic motion of the eyes Mathematical formulation: inverse optimal control Given ˙ X = φ ( X, u ) and a set Γ of trajectories, find a cost C ( X u ) such that every γ ∈ Γ is solution of inf { C ( X u ) : X u traj. s.t. X u (0) = γ (0) , X u ( T ) = γ ( T ) } . F. Jean (ENSTA ParisTech) Inverse optimal control PICOF ’12 3 / 34

  4. Inverse optimal control Difficulties: Γ = experimental data (noise, feedbacks, etc) Dynamical model not always known ( ← hierarchical optimal control) Limited precision of both dynamical models and costs ⇒ necessity of stability (genericity) of the criterion Non well-posed inverse problem No general method Validation method: a program in three steps Modelling step: propose a class of optimal control problems 1 Analysis step: enhance qualitative properties of the optimal synthesis 2 → reduce the class of problems (using geometric control theory) Comparison step: numerical methods 3 → choice of the best fitting L (identification) F. Jean (ENSTA ParisTech) Inverse optimal control PICOF ’12 4 / 34

  5. Inverse optimal control Difficulties: Γ = experimental data (noise, feedbacks, etc) Dynamical model not always known ( ← hierarchical optimal control) Limited precision of both dynamical models and costs ⇒ necessity of stability (genericity) of the criterion Non well-posed inverse problem No general method Validation method: a program in three steps Modelling step: propose a class of optimal control problems 1 Analysis step: enhance qualitative properties of the optimal synthesis 2 → reduce the class of problems (using geometric control theory) Comparison step: numerical methods 3 → choice of the best fitting L (identification) F. Jean (ENSTA ParisTech) Inverse optimal control PICOF ’12 4 / 34

  6. Inverse optimal control Outline Inverse optimal control 1 Arm pointing motions 2 Modelling Necessary and sufficient conditions for inactivation Validation/Simulations Goal oriented human locomotion 3 Modelling Analysis of the direct problem Locomotion depends only on ˙ θ F. Jean (ENSTA ParisTech) Inverse optimal control PICOF ’12 5 / 34

  7. Arm pointing motions Outline Inverse optimal control 1 Arm pointing motions 2 Modelling Necessary and sufficient conditions for inactivation Validation/Simulations Goal oriented human locomotion 3 Modelling Analysis of the direct problem Locomotion depends only on ˙ θ F. Jean (ENSTA ParisTech) Inverse optimal control PICOF ’12 6 / 34

  8. Arm pointing motions Arm pointing motions with B. Berret, C. Papaxanthis, T. Pozzo (INSERM Dijon), J.-P. Gauthier (Univ. Toulon) and C. Darlot (CNRS - Telecom ParisTech) Pointing motions in a vertical plane (1, 2, or 3 degrees of freedom) Fast motions in fixed time F. Jean (ENSTA ParisTech) Inverse optimal control PICOF ’12 7 / 34

  9. Arm pointing motions Typical experimental data for 1 dof stick diagram stick diagram velocity 0 0.2 0.2 0.4 0 0.4 DA DP EMGs BI TR Time (s) Time (s) F. Jean (ENSTA ParisTech) Inverse optimal control PICOF ’12 8 / 34

  10. Arm pointing motions Typical experimental data for 2 dof stick diagram stick diagram velocity 0 0.2 0.4 0.2 0.4 0 DA DP EMGs BI TR Time (s) Time (s) F. Jean (ENSTA ParisTech) Inverse optimal control PICOF ’12 9 / 34

  11. Arm pointing motions Main characteristics Some strong qualitative characteristics: simultaneous inactivations of opposing muscles; asymmetric velocity profile (acceleration phases shorter than the deceleration ones); ... and more quantitative ones: (for 2 et 3 dof) curvature of the finger trajectory; (for 3 dof) final configuration of the arm. F. Jean (ENSTA ParisTech) Inverse optimal control PICOF ’12 10 / 34

  12. Arm pointing motions Main characteristics Some strong qualitative characteristics: simultaneous inactivations of opposing muscles; asymmetric velocity profile (acceleration phases shorter than the deceleration ones); ... and more quantitative ones: (for 2 et 3 dof) curvature of the finger trajectory; (for 3 dof) final configuration of the arm. F. Jean (ENSTA ParisTech) Inverse optimal control PICOF ’12 10 / 34

  13. Arm pointing motions Modelling Outline Inverse optimal control 1 Arm pointing motions 2 Modelling Necessary and sufficient conditions for inactivation Validation/Simulations Goal oriented human locomotion 3 Modelling Analysis of the direct problem Locomotion depends only on ˙ θ F. Jean (ENSTA ParisTech) Inverse optimal control PICOF ’12 11 / 34

  14. Arm pointing motions Modelling Modelling Arm = controlled mechanical system described by: x ∈ R n , → M ( x )¨ x = ψ ( x, ˙ x ) + u, u = action of the muscles (torques); ψ ( x, ˙ x ) = gravity + frictions + Coriolis; M ( x ) = inertia matrix (positive definite); ˙ x ) ∈ R 2 n , u ∈ R n . ⇔ X = φ ( X, u ) , X = ( x, ˙ Bounds on the torque u : 1 , u + n , u + i < 0 < u + u ∈ [ u − 1 ] × ... × [ u − u − n ] , i F. Jean (ENSTA ParisTech) Inverse optimal control PICOF ’12 12 / 34

  15. Arm pointing motions Modelling Optimal control problem � T Criterion: J ( u ) = f ( X, u ) dt . 0 u �→ f ( X, u ) strictly convex. Hyp. Initial data: X s = ( x s , 0) , target: X t = ( x t , 0) . The time T > 0 is fixed. Optimal control problem ( P ) minimise the integral cost J ( u ) among the trajectories of ˙ X = φ ( X, u ) joining X s to X t in time T . Theorem. The minimum of ( P ) is reached by some optimal trajectory F. Jean (ENSTA ParisTech) Inverse optimal control PICOF ’12 13 / 34

  16. Arm pointing motions Necessary and sufficient conditions for inactivation Outline Inverse optimal control 1 Arm pointing motions 2 Modelling Necessary and sufficient conditions for inactivation Validation/Simulations Goal oriented human locomotion 3 Modelling Analysis of the direct problem Locomotion depends only on ˙ θ F. Jean (ENSTA ParisTech) Inverse optimal control PICOF ’12 14 / 34

  17. Arm pointing motions Necessary and sufficient conditions for inactivation Necessary condition Definition u contains an inactivation if one of its components u i is ≡ 0 on a non-empty interval. Not ◦ : SC = set of functions f ( X, u ) such that u �→ f ( X, u ) is strictly convex and differentiable. Theorem For a generic cost f ∈ SC , no minimizing control of ( P ) contain inactivation. ⇒ the cost f is necessarily non differentiable w.r.t. u (Proof: Pontryagin Maximum Principle + Thom transversality) F. Jean (ENSTA ParisTech) Inverse optimal control PICOF ’12 15 / 34

  18. Arm pointing motions Necessary and sufficient conditions for inactivation Sufficient condition Constraints on the cost: necessarily non differentiable w.r.t. u related to energetic consumption Candidates: functions of the absolute work of the controlled forces. Work of the controlled forces: n n � � � � � w = udx = u i dx i = u i ˙ x i dt. i =1 i =1 Measure of the energetic consumption = absolute work: n � ˙ ˙ � Aw = Aw ( X, u ) , o` u Aw ( X, u ) = | u i ˙ x i | , X = ( x, ˙ x ) i =1 ˙ → Aw non differentiable w.r.t. u when one component u i = 0 . F. Jean (ENSTA ParisTech) Inverse optimal control PICOF ’12 16 / 34

  19. Arm pointing motions Necessary and sufficient conditions for inactivation � T Form of the costs: J ( u ) = f ( X, u ) dt with 0 ∂ϕ f ( X, u ) = ϕ ( ˙ Aw, X, u ) , � = 0 ∂ ˙ Aw Theorem (Inactivation Principle) Minimizing such a cost J ( u ) implies the occurrence of inactivations in every optimal trajectory of ( P ) when T is small enough. F. Jean (ENSTA ParisTech) Inverse optimal control PICOF ’12 17 / 34

  20. Arm pointing motions Necessary and sufficient conditions for inactivation Explanation ( n = 1 and f ( X, u ) = | ˙ xu | + differentiable fn) Pontr. Max. Principle: every minimizing control u ∗ ( · ) maximizes the Hamiltonian H = − f ( X, u ) + P T φ ( X, u ) . ⇒ 0 ∈ ∂ u H = − ˙ x∂ u | u ∗ | + g ( t ) , where g continuous. � g = ˙ x if u ∗ > 0 , x if u ∗ < 0 , g = − ˙ → x ] if u ∗ = 0 . g ∈ [ − ˙ x, ˙ Thus, when the sign of u ∗ changes, g passes from ˙ x to − ˙ x continuously = ⇒ inactivation!! F. Jean (ENSTA ParisTech) Inverse optimal control PICOF ’12 18 / 34

  21. Arm pointing motions Validation/Simulations Outline Inverse optimal control 1 Arm pointing motions 2 Modelling Necessary and sufficient conditions for inactivation Validation/Simulations Goal oriented human locomotion 3 Modelling Analysis of the direct problem Locomotion depends only on ˙ θ F. Jean (ENSTA ParisTech) Inverse optimal control PICOF ’12 19 / 34

Recommend


More recommend