minimization of lattice energies
play

Minimization of lattice energies From old to new results in - PowerPoint PPT Presentation

Minimization of lattice energies From old to new results in dimensions 2 and 3 Laurent B etermin Institute for Applied Mathematics, University of Heidelberg Joint works with P. Zhang and M. Petrache OPCOP 2017 19th April 2017, CIEM, Castro


  1. Minimization of lattice energies From old to new results in dimensions 2 and 3 Laurent B´ etermin Institute for Applied Mathematics, University of Heidelberg Joint works with P. Zhang and M. Petrache OPCOP 2017 19th April 2017, CIEM, Castro Urdiales Laurent B´ etermin Review Lattice Energies 04/19/2017 1 / 20

  2. Introduction: minimization among Bravais lattices Definitions Potential: f : (0 , + ∞ ) → R such that f ( r ) = O ( r − η ), η > d / 2 d � Energy per point of a Bravais lattice L = Z u i is given by i =1 � | p | 2 � � E f [ L ] := f < + ∞ p ∈ L \{ 0 } Let V (or A ) be the volume (area) of L , i.e. the volume of its unit cell. Problems Minimizing L �→ E f [ L ] among all the Bravais lattices L with (or without) a fixed volume V . Motivation: Crystallization problems; Vortices in superconductors Laurent B´ etermin Review Lattice Energies 04/19/2017 2 / 20

  3. Main examples Epstein zeta function 1 � If f ( r ) = r − s / 2 , s > d , then ζ L ( s ) := | p | s . p ∈ L \{ 0 } Theta function e − πα | p | 2 . � If f ( r ) = e − απ r , α > 0, then θ L ( α ) := p ∈ L Lennard-Jones energy If f ( r ) = a 1 r x 1 − a 2 r x 2 , a i > 0, x 2 > x 1 > d / 2, then E f [ L ] = a 2 ζ L (2 x 2 ) − a 1 ζ L (2 x 1 ) . Laurent B´ etermin Review Lattice Energies 04/19/2017 3 / 20

  4. Triangular lattice Laurent B´ etermin Review Lattice Energies 04/19/2017 4 / 20

  5. FCC and BCC lattices Face-Centred-Cubic lattice Body-Centred-Cubic lattice Laurent B´ etermin Review Lattice Energies 04/19/2017 5 / 20

  6. Epstein zeta function and theta function: old results 1 New results for Lennard-Jones energy 2 Theta function in 3d: Local minimality of FCC/BCC lattices 3 Laurent B´ etermin Review Lattice Energies 04/19/2017 6 / 20

  7. Epstein zeta function and theta function: old results The Epstein zeta function in dimensions 2 and 3 The volume of lattices should be fixed. Rankin ’53, Cassels ’59, Diananda ’64, Ennola ’64: in 2d , for any s > 0, the minimizer of the Epstein zeta function 1 � L �→ ζ L ( s ) := | p | s p ∈ L \{ 0 } is a triangular lattice , for any fixed area; Ennola ’64: in 3d , for any s > 0, the FCC and the BCC lattices are local minimizers of L �→ ζ L ( s ), for any fixed volume. [Sarnak-Str¨ ombergsson ’06] - Conjecture for L �→ ζ L ( s ), V = 1 For any s > 3 / 2, the FCC lattice is the unique minimizer; For any 0 < s < 3 / 2, the BCC lattice is the unique minimizer. Laurent B´ etermin Review Lattice Energies 04/19/2017 7 / 20

  8. Epstein zeta function and theta function: old results The theta function in dimensions 2 and 3 The volume of lattices should be fixed. Montgomery ’88: in 2d , for any α > 0, the minimizer of the theta function e − πα | p | 2 � L �→ θ L ( α ) := p ∈ L is a triangular lattice , for any fixed area. [Sarnak-Str¨ ombergsson ’06] - Conjecture for L �→ θ L ( α ), V = 1 For any α > 1, the FCC lattice is the unique minimizer; For any 0 < α < 1, the BCC lattice is the unique minimizer. Applications: Heat equation, Ginzburg-Landau Vortices, Bose-Einstein Condensates, Cryptography... Laurent B´ etermin Review Lattice Energies 04/19/2017 8 / 20

  9. Epstein zeta function and theta function: old results Completely monotone functions and the triangular lattice By Bernstein Theorem, we get: Proposition ( Minimality at any fixed volume in 2d ) Let f be a completely monotone function such that f ( r ) = O ( r − p ), p > 1, then for any A > 0, the triangular lattice Λ A is the unique minimizer of L �→ E f [ L ] among Bravais lattices of fixed area A . Also true for long-range potentials (Ewald summation method). In particular, the triangular lattice is the minimizer of e − a | p | e −| p | 2 α , 0 < α ≤ 1; � � � K 0 ( | p | ); | p | , a > 0 . p ∈ L p ∈ L \{ 0 } p ∈ L \{ 0 } [Cohn-Kumar ’06] - Conjecture If f is completely monotone, then Λ A is the unique minimizer of L �→ E f [ L ] among periodic lattices of fixed area A . Laurent B´ etermin Review Lattice Energies 04/19/2017 9 / 20

  10. Epstein zeta function and theta function: old results Convexity Proposition [LB ’15] ( Example of non optimality of Λ A ) Let f be defined by f ( r ) = 14 r 2 − 40 r 3 + 35 r 4 , then f is strictly convex , strictly decreasing and strictly positive ; there exist A 1 , A 2 such that Λ A is not a minimizer of E f among all Bravais lattices of fixed area A ∈ ( A 1 , A 2 ). Remark: A 1 ≈ 2 . 3152307 and A 2 ≈ 3 . 759353. Laurent B´ etermin Review Lattice Energies 04/19/2017 10 / 20

  11. New results for Lennard-Jones energy Lennard-Jones in 2d: results about the global minimizer + ) 2 and 1 < x 1 < x 2 , let For ( a 1 , a 2 ) ∈ ( R ∗ a , x ( r ) := a 2 r x 2 − a 1 f LJ and E f LJ a , x [ L ] = a 2 ζ L (2 x 2 ) − a 1 ζ L (2 x 1 ) . r x 1 Proposition [LB-Zhang ’14, LB ’15] ( High/low densities ) 1 � a 2 Γ( x 1 ) � x 2 − x 1 , then Λ A is the unique minimizer of E f LJ • If A ≤ π a 1 Γ( x 2 ) a , x among Bravais lattices of fixed area A . • Triangular lattice Λ A is a minimizer of E f LJ a , x among Bravais lattices of fixed area A if and only if 1 � a 2 ( ζ L (2 x 2 ) − ζ Λ 1 (2 x 2 )) � x 2 − x 1 , A ≤ inf a 1 ( ζ L (2 x 1 ) − ζ Λ 1 (2 x 1 )) | L | =1 , L � =Λ 1 i.e. if A is sufficiently large , then Λ A is NOT a minimizer . Laurent B´ etermin Review Lattice Energies 04/19/2017 11 / 20

  12. New results for Lennard-Jones energy Lennard-Jones in 2d: results about the global minimizer Theorem [LB ’15] ( Global minimizer for LJ type potentials ) Let h ( t ) := π − t Γ( t ) t . If h ( x 2 ) ≤ h ( x 1 ), then the minimizer L a , x of E f LJ a , x among all Bravais lattices is unique and triangular . Furthermore, its area is 1 � a 2 x 2 ζ Λ 1 (2 x 2 ) � x 2 − x 1 . | L a , x | = a 1 x 1 ζ Λ 1 (2 x 1 ) Remark: True for ( x 1 , x 2 ) ∈ { (1 . 5 , 2); (1 . 5 , 2 . 5); (1 . 5 , 3); (2 , 2 . 5); (2 , 3) } . Cannot be used for the classical Lennard-Jones potential ( x 1 , x 2 ) = (3 , 6). Laurent B´ etermin Review Lattice Energies 04/19/2017 12 / 20

  13. New results for Lennard-Jones energy Lennard-Jones in 2d: local study � √ √ � � � √ A x A A √ y , By lattice reduction, u 1 = y , 0 and u 2 = , , where y ( x , y ) ∈ R 2 ; 0 ≤ x ≤ 1 / 2 , y > 0 , x 2 + y 2 ≥ 1 � � ( x , y ) ∈ D := . Each ( x , y , A ) is associated with one Bravais lattice L = Z u 1 ⊕ Z u 2 . Theorem [LB ’16] - Local study of E f LJ a , x Given ( a , x ), there exist A 0 < A 1 < A 2 (explicit in terms of infinite sums) such that: if 0 < A < A 0 , then Λ A is a local minimizer ; if A > A 0 , then Λ A is a local maximizer ; √ A Z 2 is a local minimizer ; if A 1 < A < A 2 , then √ A Z 2 is a saddle point . if A �∈ [ A 1 , A 2 ], then Laurent B´ etermin Review Lattice Energies 04/19/2017 13 / 20

  14. New results for Lennard-Jones energy Degeneracy as A → + ∞ Theorem [LB ’16] - Minimizer for large A a , x ( r 2 ) = 1 r 12 − 2 Let f LJ r 6 , then there exists A 3 such that for any A > A 3 , the minimizer of E f LJ a , x is a rectangular lattice , i.e. ( x , y ) = (0 , y A ) ∈ D . Furthermore, A → + ∞ y A = + ∞ . lim Thanks Doug! Laurent B´ etermin Review Lattice Energies 04/19/2017 14 / 20

  15. New results for Lennard-Jones energy Lennard-Jones in 2d: numerical investigation a , x ( r 2 ) = 1 r 12 − 2 We consider the classic case f LJ r 6 . � ζ L (12) − ζ Λ 1 (12) � 1 / 3 A BZ = inf ≈ 1 . 138, A 1 ≈ 1 . 143, A 2 ≈ 1 . 268. 2( ζ L (6) − ζ Λ 1 (6)) | L | =1 L � =Λ1 Laurent B´ etermin Review Lattice Energies 04/19/2017 15 / 20

  16. New results for Lennard-Jones energy Lennard-Jones in 3d: local study By lattice reduction, L = Z u 1 ⊕ Z u 2 ⊕ Z u 3 of volume V is such that � 1 � x � y √ √ √ � √ u , v � √ u , vz u � u 1 = C √ u , 0 , 0 , u 2 = C √ u , 0 , u 3 = C √ u , √ v 2 where C = V 2 / 3 2 1 / 3 . We have 5 parameters ( u , v , x , y , z ). Theorem [LB ’16] - Local optimality of BCC and FCC For any f , BCC and FCC lattices are critical points of L �→ E f [ L ]. Given ( a , x ), there exist V 0 < V 1 (explicit) such that if 0 < V < V 0 , then BCC and FCC are local minimizers of E f LJ a , x ; if V 0 < V < V 1 , then BCC and FCC are saddle points of E f LJ a , x ; if V > V 1 , then BCC and FCC are local maximizers of E f LJ a , x . Proof: following Ennola’s proof for L �→ ζ L ( s ). Laurent B´ etermin Review Lattice Energies 04/19/2017 16 / 20

  17. Theta function in 3d: Local minimality of FCC/BCC lattices L �→ θ L ( α ) in 3d: minimality of BCC among BCO lattices Body-Centred-Orthorhombic (BCO) lattice L y , t = 1, y ≥ 1. Theorem [LB-Petrache ’16] - Optimality of BCC/FCC There exists α 0 such that, for any α > α 0 , y = 1 is not a minimizer of y �→ θ L y ( α ). If α ∈ { 0 . 001 k ; k ∈ N , 1 ≤ k ≤ 1000 } , then the BCC lattice is the unique minimizer of y �→ θ L y ( α ). Proof: Asymptotics of the energy + Computer assistant. Laurent B´ etermin Review Lattice Energies 04/19/2017 17 / 20

Recommend


More recommend