method i fibonacci multigrid method
play

Method I:FIBONACCI MULTIGRID METHOD (* calculate the vertices for - PowerPoint PPT Presentation

Method I:FIBONACCI MULTIGRID METHOD (* calculate the vertices for each tile *) Tiles-vertices={}; Tiles-vertices=N@Table[Flatten[ Table[ k1* [[ Tiles-rs[[j,1]]]]+ k2* [[ Tiles-rs[[j,2]]]]+ (Tiles-k[[j,Tiles-t-list[[j,1]]]]+0)* [[


  1. Method I:FIBONACCI MULTIGRID METHOD (* calculate the vertices for each tile *) Tiles-vertices={}; Tiles-vertices=N@Table[Flatten[ Table[ k1* ϵ[[ Tiles-rs[[j,1]]]]+ k2* ϵ[[ Tiles-rs[[j,2]]]]+ (Tiles-k[[j,Tiles-t-list[[j,1]]]]+0)* ϵ[[ Tiles-t-list[[j,1]]]]+ (Tiles-k[[j,Tiles-t-list[[j,2]]]]+0)* ϵ[[ Tiles-t-list[[j,2]]]]+ (Tiles-k[[j,Tiles-t-list[[j,3]]]]+0)* ϵ[[ Tiles-t-list[[j,3]]]], {k1,Tiles-k[[j,Tiles-rs[[j,1]]]]+0,Tiles-k[[j,Tiles-rs[[j,1]]]]+1}, {k2,Tiles-k[[j,Tiles-rs[[j,2]]]]+0,Tiles-k[[j,Tiles-rs[[j,2]]]]+1} ] ,1] Pentagrid ,{j,1,num Tiles}];

  2. • (* calculate the vertices for each tile *) • Tiles vertices={}; • Tiles vertices=N@Table[Flatten[ • Table[ • k1* ϵ[[ Tiles rs[[j,1]]]]+ • k2* ϵ[[ Tiles rs[[j,2]]]]+ • (Tiles k[[j,Tiles t list[[j,1]]]]+0)* ϵ[[ Tiles t list[[j,1]]]]+ • (Tiles k[[j,Tiles t list[[j,2]]]]+0)* ϵ[[ Tiles t list[[j,2]]]]+ • (Tiles k[[j,Tiles t list[[j,3]]]]+0)* ϵ[[ Tiles t list[[j,3]]]], • {k1,Tiles k[[j,Tiles rs[[j,1]]]]+0,Tiles k[[j,Tiles rs[[j,1]]]]+1}, • {k2,Tiles k[[j,Tiles rs[[j,2]]]]+0,Tiles k[[j,Tiles rs[[j,2]]]]+1} • ] • ,1] • ,{j,1,num Tiles}];

  3. Method I:FIBONACCI MULTIGRID METHOD Fibonacci spaced Pentagrid

  4. Method I:FIBONACCI MULTIGRID METHOD

  5. Method I:FIBONACCI MULTIGRID METHOD

  6. Method I:FIBONACCI MULTIGRID METHOD

  7. Method I:FIBONACCI MULTIGRID METHOD

  8. Method I:FIBONACCI MULTIGRID METHOD

  9. Method II: Composite from E8 QCs

  10. Method II: Composite from E8 QCs

  11. Method II: Composite from E8 QCs

  12. E8 Subset of 3D Tetra- Golden Elser-Sloane Compound Fibonacci Slicing Composition QC quasicrystal tetragrid Enrichment Subset of 1 2 A F B E C N O N O R S ± ฀ ¬ \ Î ¶Ñ a Fibonacci Fibonacci Tetragrid Spacing tetragrid Composition Golden Fibonacci icosagrid IcosaGrid

  13. Code in QSN guided from E8 • The binary on/off selection from E8 directly mapped to the on/off selection in QSN, as the possibility space. • Ray has given other proposals on the coding in QSN

  14. 600-CELL OVERLAP TYPES

Recommend


More recommend