message security
play

Message Security Mahmoud Yehia, Riham AlTawy and T. Aaron Gulliver - PowerPoint PPT Presentation

Hash-Based Signatures Revisited: A Dynamic FORS with Adaptive Chosen Message Security Mahmoud Yehia, Riham AlTawy and T. Aaron Gulliver Department of Electrical and Computer Engineering, University of Victoria, Victoria, BC, Canada AfricaCrypt


  1. Hash-Based Signatures Revisited: A Dynamic FORS with Adaptive Chosen Message Security Mahmoud Yehia, Riham AlTawy and T. Aaron Gulliver Department of Electrical and Computer Engineering, University of Victoria, Victoria, BC, Canada AfricaCrypt 2020

  2. Outline • Hash-Based digital signature schemes – OTS – FTS – MTS • Definitions – r-subset cover – r-subset resilient – r-target subset resilient • HORST VS FORS • FORS Security Analysis • DFORS – Signing and verifications – DFORS security Analysis – Comparisons with other variants – DFORS and FORS Adaptive Chosen Message attack security Comparison • Conclusion

  3. Hash-Based digital signature schemes • One-Time Signatures OTS – Lamport OTS – WOTS and its variants

  4. Hash-Based digital signature schemes • One-Time Signatures OTS – Lamport OTS – WOTS and its variants • Few-Time Signatures FTS – Biba – HORS and its variants

  5. Hash-Based digital signature schemes • One-Time Signatures OTS – Lamport OTS – WOTS and its variants • Few-Time Signatures FTS – Biba – HORS and its variants • Many-Time Signature – Stateful signature schemes • MSS, XMSS, XMSS+, XMSS 𝑁𝑈 , XMSS-T – Stateless signature schemes • SPHINCS, Gravity-SPHINCS, SPHINCS+

  6. Definitions • r-subset cover 𝑠 𝑠 (𝑛 1 , 𝑛 2 , … , 𝑛 𝑠+1 ) ⇔ 𝑃𝑆𝑇(𝑛 𝑠+1 ) ⊆ ራ 𝐷 𝑙 (𝑛 𝑗 ) 𝑗=1 𝑃𝑆𝑇 𝑛 𝑗 = 𝑐 0 , 𝑐 1 , … , 𝑐 𝑙−1 : 𝐼 𝑛 𝑗 = 𝑐 0 ∥ 𝑐 1 ∥ … ∥ 𝑐 𝑙−1 , 𝑐 𝑗 ϵ{0,1, … , 𝑢 − 1}

  7. Definitions • r-subset cover • r-subset resilient Pr[ (𝑛 1 , 𝑛 2 , … , 𝑛 𝑠+1 ) ← 𝐵 (1 𝑜 ,𝑙,𝑢) : 𝐷 𝑙 𝑠 (𝑛 1 , 𝑛 2 , … , 𝑛 𝑠+1 ) ] ≤ 𝑜𝑓𝑕(𝑜, 𝑢)

  8. Definitions • r-subset cover • r-subset resilient • r-target subset resilient Pr[ (𝑛 𝑠+1 ) ← 𝐵 (1 𝑜 ,𝑙,𝑢,𝑛 1 ,𝑛 2 ,…,𝑛 𝑠 ) : 𝐷 𝑙 𝑠 (𝑛 1 , 𝑛 2 , … , 𝑛 𝑠+1 ) ] ≤ 𝑜𝑓𝑕(𝑜, 𝑢)

  9. HORST VS FORS • HORST – Each rectangular represent sk out of t-secret keys – The leaf nodes are the one way function of each sk ( 𝐺(𝑡𝑙)) – The upper nodes are the hash of the concatenation of the daughter nodes. – The top layer root is the public key.

  10. HORST VS FORS • HORST • FORS 𝑄𝐿 = 𝐼(𝑠𝑝𝑝𝑢 0 ∥ 𝑠𝑝𝑝𝑢 1 ∥ ⋯ ∥ 𝑠𝑝𝑝𝑢 𝑙−1 )

  11. FORS Security Analysis • Non adaptive chosen message attack (r-target subset resilient ) 𝑠−𝐺𝑃𝑆𝑇 𝑛 1 , 𝑛 2 , … , 𝑛 𝑠+1 𝑠 • 𝐷 𝑙 ⇔ 𝑐 𝑗 𝑛 𝑠+1 ∈ڂ 𝑘=1 𝑐 𝑗 𝑛 𝑘 – 𝑃𝑆𝑇 𝑛 𝑗 = (𝑐 0 , 𝑐 1 , … , 𝑐 𝑙−1 ) 𝐶𝑗𝑢 𝑇𝑓𝑑𝑣𝑠𝑗𝑢𝑧 = log 2 (𝑢/𝑠) 𝑙 = 𝑙(log 2 𝑢 − log 2 𝑠)

  12. FORS Security Analysis • Non adaptive chosen message attack (r-target subset resilient ) 𝑠−𝐺𝑃𝑆𝑇 𝑛 1 , 𝑛 2 , … , 𝑛 𝑠+1 𝑠 • 𝐷 𝑙 ⇔ 𝑐 𝑗 𝑛 𝑠+1 ∈ڂ 𝑘=1 𝑐 𝑗 𝑛 𝑘 – 𝑃𝑆𝑇 𝑛 𝑗 = (𝑐 0 , 𝑐 1 , … , 𝑐 𝑙−1 ) 𝐶𝑗𝑢 𝑇𝑓𝑑𝑣𝑠𝑗𝑢𝑧 = log 2 (𝑢/𝑠) 𝑙 = 𝑙(log 2 𝑢 − log 2 𝑠) • Adaptive chosen message attack (r-subset resilient ) 𝑠 + 1 log 2 𝑢 − log 2 𝑠 + log 2 𝑠! 𝑙 𝐶𝑗𝑢 𝑇𝑓𝑑𝑣𝑠𝑗𝑢𝑧 = 𝑠 + 1

  13. Dynamic Forest of Random Subsets (DFORS) • DFORS inherits the advantage of FORS • It mitigates the offline advantages of the adaptive chosen message attack • It binds the ORS generation with the signing procedures • only the signer is able to efficiently generate an ORS

  14. Dynamic Forest of Random Subsets (DFORS) • ORS Generation 𝑎 ℎ : ℎ 𝑘 ← {ℎ 0 ∥ ℎ 1 ∥ ⋯ ∥ ℎ 𝑙−1 }, 𝑘 = ℎ 𝑛𝑝𝑒 𝑙

  15. Dynamic Forest of Random Subsets (DFORS) • Signature Algorithm ✓ ORS Generation ✓ σ = 𝑡𝑗𝑕 0 , 𝑡𝑗𝑕 1 , … , 𝑡𝑗𝑕 𝑙−1 = (𝑡𝑙 𝑐 0 , 𝐵𝑣𝑢ℎ 0 , 𝑡𝑙 𝑐 1 , 𝐵𝑣𝑢ℎ 1 , … , 𝑡𝑙 𝑐 𝑙−1 , 𝐵𝑣𝑢ℎ 𝑙−1 ) ෍ = (𝛕 0 , 𝐵𝑣𝑢ℎ 0 , 𝛕 1 , 𝐵𝑣𝑢ℎ 1 , … , 𝛕 𝑙−1 , 𝐵𝑣𝑢ℎ 𝑙−1 ) 𝑄𝐿 = 𝐼(𝑠𝑝𝑝𝑢 0 ∥ 𝑠𝑝𝑝𝑢 1 ∥ ⋯ ∥ 𝑠𝑝𝑝𝑢 𝑙−1 )

  16. Dynamic Forest of Random Subsets (DFORS) • Signature Algorithm ✓ ORS Generation ✓ σ = 𝑡𝑗𝑕 0 , 𝑡𝑗𝑕 1 , … , 𝑡𝑗𝑕 𝑙−1 = (𝑡𝑙 𝑐 0 , 𝐵𝑣𝑢ℎ 0 , 𝑡𝑙 𝑐 1 , 𝐵𝑣𝑢ℎ 1 , … , 𝑡𝑙 𝑐 𝑙−1 , 𝐵𝑣𝑢ℎ 𝑙−1 ) ෍ = (𝛕 0 , 𝐵𝑣𝑢ℎ 0 , 𝛕 1 , 𝐵𝑣𝑢ℎ 1 , … , 𝛕 𝑙−1 , 𝐵𝑣𝑢ℎ 𝑙−1 ) • Verification ✓ Compute 𝑐 𝑗 = 𝑎(𝐼 𝛕 𝑗−1 (ℎ 0 ||ℎ 𝑗−1 )) it is needed to know the leaf index ✓ Each (𝑐 𝑗 , 𝛕 𝑗 , 𝐵𝑣𝑢ℎ 𝑗 ) are used to calculate the 𝑠𝑝𝑝𝑢 𝑗 ✓ 𝑄𝐿 ≟ 𝐼(𝑠𝑝𝑝𝑢 0 ∥ 𝑠𝑝𝑝𝑢 1 ∥ ⋯ ∥ 𝑠𝑝𝑝𝑢 𝑙−1 )

  17. DFORS Security Analysis • Non adaptive chosen message attack (r-target subset resilient ) 𝑠−𝐸𝐺𝑃𝑆𝑇 𝑛 1 , 𝑛 2 , … , 𝑛 𝑠+1 𝑠 • 𝐷 𝑙 ⇔ 𝑐 𝑗 𝑛 𝑠+1 ∈ڂ 𝑘=1 𝑐 𝑗 𝑛 𝑘 𝐶𝑗𝑢 𝑇𝑓𝑑𝑣𝑠𝑗𝑢𝑧 = log 2 (𝑢/𝑠) 𝑙 = 𝑙(log 2 𝑢 − log 2 𝑠)

  18. DFORS Security Analysis • Non adaptive chosen message attack (r-target subset resilient ) 𝑠−𝐸𝐺𝑃𝑆𝑇 𝑛 1 , 𝑛 2 , … , 𝑛 𝑠+1 𝑠 • 𝐷 𝑙 ⇔ 𝑐 𝑗 𝑛 𝑠+1 ∈ڂ 𝑘=1 𝑐 𝑗 𝑛 𝑘 𝐶𝑗𝑢 𝑇𝑓𝑑𝑣𝑠𝑗𝑢𝑧 = log 2 (𝑢/𝑠) 𝑙 = 𝑙(log 2 𝑢 − log 2 𝑠) • Adaptive chosen message attack (r-subset resilient ) 𝐶𝑗𝑢 𝑇𝑓𝑑𝑣𝑠𝑗𝑢𝑧 = 𝑙 log 2 𝑢 − log 2 𝑠 While for FORS The adaptive chosen message attack bitsec 𝑠 + 1 log 2 𝑢 − log 2 𝑠 + log 2 𝑠! 𝑙 𝐶𝑗𝑢 𝑇𝑓𝑑𝑣𝑠𝑗𝑢𝑧 = 𝑠 + 1

  19. DFORS Theoretical Efficiency & comparison with HORS Variants

  20. DFORS and FORS Adaptive Chosen Message attack security Comparison

  21. Conclusion We have • Analysed FORS against Adaptive chosen message attack • Showed that as the number of signed messages increases, the bit security w.r.t. adaptive chosen message attack decreases significantly compared to non-adaptive chosen message attack • Presented dynamic FORS with adaptive message security. • Showed that DFORS bit security w.r.t. adaptive chosen message attack is equal to its security in a non-adaptive setting.

  22. Thank You!

Recommend


More recommend