mathematische probleme aus den life sciences
play

Mathematische Probleme aus den Life-Sciences Peter Schuster - PowerPoint PPT Presentation

Mathematische Probleme aus den Life-Sciences Peter Schuster Institut fr Theoretische Chemie und Molekulare Strukturbiologie der Universitt Wien Vortragsreihe Mathematik im Betrieb Dornbirn, 27.05.2004 Web-Page for further


  1. Kinetic differential equations d x = = i f ( x , x , K , x ; k , k , K , k ) ; i 1 , 2 , K , n 1 2 n 1 2 m d t Reaction diffusion equations ∂ x = ∇ 2 + = i D x f ( x , x , , x ; k , k , , k ) ; i 1 , 2 , , n K K K ∂ i i 1 2 n 1 2 m t General conditions: , , pH , , ... T p I Initial conditions: = x i ( 0 ) ; i 1 , 2 , , n K Parameter set � = k ( T , p , p H , I , ; x , x , , x ) ; j 1 , 2 , , m Boundary conditions: boundary ... s K K K j 1 2 n � normal unit vector ... u r x s = = Dirichlet , f ( r , t ) ; i 1 , 2 , , n K i ∂ x r r Neumann , i = ˆ ⋅ ∇ s = = u x f ( r , t ) ; i 1 , 2 , , n K i ∂ u Data from measurements x t ( ); = 1, 2, ... , ; = 1, 2, ... , i n k N i k x i Concentration The inverse-problem of chemical reaction kinetics t Time

  2. Neurobiology Neural networks, collective properties, nonlinear dynamics, signalling, ... A single neuron signaling to a muscle fiber

  3. Neurobiology Neural networks, collective properties, nonlinear dynamics, signalling, ... d V 1 = − − − − − − 3 4 I g m h ( V V ) g n ( V V ) g ( V V ) Na Na K K l l d t C M dm = α − − β Hogdkin-Huxley OD equations ( 1 m ) m m m dt dh = α − − β ( 1 h ) h h h dt dn = α − − β ( 1 n ) n n n dt

  4. The human brain 10 11 neurons connected by � 10 13 to 10 14 synapses

  5. Evolutionary biology Optimization through variation and selection, relation between genotype, phenotype, and function, ... 10 6 generations 10 7 generations Generation time 10 000 generations RNA molecules 10 sec 27.8 h = 1.16 d 115.7 d 3.17 a 1 min 6.94 d 1.90 a 19.01 a Bacteria 20 min 138.9 d 38.03 a 380 a 10 h 11.40 a 1 140 a 11 408 a Higher multicelluar 10 d 274 a 27 380 a 273 800 a 2 × 10 7 a 2 × 10 8 a organisms 20 a 20 000 a Time scales of evolutionary change

  6. 1. Komplexität in der Biologie 2. Evolutionäre Optimierung und Lernen im Ensemble 3. Strukturbildung von Biomolekülen als kombinatorisches Problem 4. Modellbildung in der Neurobiologie

  7. Element of class 1: The RNA molecule

  8. Stock Solution Reaction Mixture Replication rate constant: f k = � / [ � + � d S (k) ] � (k) = d H (S k ,S � d S ) Selection constraint: # RNA molecules is controlled by the flow ≈ ± N ( t ) N N The flowreactor as a device for studies of evolution in vitro and in silico

  9. Replication rate constant: f k = � / [ � + � d S (k) ] � (k) = d H (S k ,S � d S ) f 6 f 7 f 5 f 0 f � f 4 f 3 f 1 f 2 Evaluation of RNA secondary structures yields replication rate constants

  10. 3'-End 5'-End 70 60 10 50 20 40 30 Randomly chosen Phenylalanyl-tRNA as initial structure target structure

  11. 50 S d � 40 t e g r a t o t e 30 c n a t s i d e r u 20 t c u r t s e g a r 10 e v A Evolutionary trajectory 0 0 250 500 750 1000 1250 Time (arbitrary units) In silico optimization in the flow reactor: Trajectory ( physicists‘ view )

  12. Average structure distance to target dS 36 � Relay steps Number of relay step 10 38 40 42 44 Evolutionary trajectory 0 1250 Time 44 Endconformation of optimization

  13. Average structure distance to target dS 36 � Relay steps Number of relay step 10 38 40 42 44 Evolutionary trajectory 0 1250 Time 43 44 Reconstruction of the last step 43 � 44

  14. Average structure distance to target dS 36 � Relay steps Number of relay step 10 38 40 42 44 Evolutionary trajectory 0 1250 Time 42 43 44 Reconstruction of last-but-one step 42 � 43 ( � 44)

  15. Average structure distance to target dS 36 � Relay steps Number of relay step 10 38 40 42 44 Evolutionary trajectory 0 1250 Time 41 42 43 44 Reconstruction of step 41 � 42 ( � 43 � 44)

  16. Average structure distance to target dS 36 � Relay steps Number of relay step 10 38 40 42 44 Evolutionary trajectory 0 1250 Time 40 41 42 43 44 Reconstruction of step 40 � 41 ( � 42 � 43 � 44)

  17. Average structure distance to target dS 36 � Relay steps Number of relay step 10 38 40 42 44 Evolutionary trajectory 0 1250 Time Evolutionary process 39 40 41 42 43 44 Reconstruction Reconstruction of the relay series

  18. Transition inducing point mutations Neutral point mutations Change in RNA sequences during the final five relay steps 39 � 44

  19. 50 Relay steps S d � 40 t e g r a t o t e 30 c n a t s i d e r u 20 t c u r t s e g a r 10 e v A Evolutionary trajectory 0 0 250 500 750 1000 1250 Time (arbitrary units) In silico optimization in the flow reactor: Trajectory and relay steps

  20. Average structure distance Uninterrupted presence Number of relay step 08 to target dS 10 � 12 28 neutral point mutations during 20 14 a long quasi-stationary epoch Evolutionary trajectory 10 0 250 500 Time (arbitrary units) Transition inducing point mutations Neutral point mutations Neutral genotype evolution during phenotypic stasis

  21. Variation in genotype space during optimization of phenotypes Mean Hamming distance within the population and drift velocity of the population center in sequence space.

  22. Spread of population in sequence space during a quasistationary epoch: t = 150

  23. Spread of population in sequence space during a quasistationary epoch: t = 170

  24. Spread of population in sequence space during a quasistationary epoch: t = 200

  25. Spread of population in sequence space during a quasistationary epoch: t = 350

  26. Spread of population in sequence space during a quasistationary epoch: t = 500

  27. Spread of population in sequence space during a quasistationary epoch: t = 650

  28. Spread of population in sequence space during a quasistationary epoch: t = 820

  29. Spread of population in sequence space during a quasistationary epoch: t = 825

  30. Spread of population in sequence space during a quasistationary epoch: t = 830

  31. Spread of population in sequence space during a quasistationary epoch: t = 835

  32. Spread of population in sequence space during a quasistationary epoch: t = 840

  33. Spread of population in sequence space during a quasistationary epoch: t = 845

  34. Spread of population in sequence space during a quasistationary epoch: t = 850

  35. Spread of population in sequence space during a quasistationary epoch: t = 855

  36. Element of class 2: The ant worker

  37. Ant colony Random foraging Food source Foraging behavior of ant colonies

  38. Ant colony Food source detected Food source Foraging behavior of ant colonies

  39. Ant colony Pheromone trail laid down Food source Foraging behavior of ant colonies

  40. Ant colony Pheromone controlled trail Food source Foraging behavior of ant colonies

  41. RNA model Foraging behavior of ant colonies Element RNA molecule Individual worker ant Mechanism relating elements Mutation in quasi-species Genetics of kinship Search process Optimization of RNA structure Recruiting of food Search space Sequence space Three-dimensional space Random step Mutation Element of ant walk Self-enhancing process Replication Secretion of pheromone Interaction between elements Mean replication rate Mean pheromone concentration Goal of the search Target structure Food source Temporary memory RNA sequences in population Pheromone trail ‘Learning’ entity Population of molecules Ant colony Learning at population or colony level by trial and error Two examples: (i) RNA model and (ii) ant colony

  42. 1. Komplexität in der Biologie 2. Evolutionäre Optimierung und Lernen im Ensemble 3. Strukturbildung von Biomolekülen als kombinatorisches Problem 4. Modellbildung in der Neurobiologie

  43. 5' - end N 1 O CH 2 O 5'-e nd GCGGAU UUA GCUC AGUUGGGA GAGC CCAGA G CUGAAGA UCUGG AGGUC CUGUG UUCGAUC CACAG A AUUCGC ACCA 3’-end N A U G C k = , , , OH O N 2 O P O CH 2 O Na � O O OH N 3 O P O CH 2 O Na � 3'-end O O OH Definition of RNA structure 5’-end N 4 O O CH 2 P O Na � 70 O O OH 60 3' - end O P O 10 Na � O 50 20 30 40

  44. James D. Watson and Francis H.C. Crick Nobel prize 1962 1953 – 2003 fifty years double helix Stacking of base pairs in nucleic acid double helices (B-DNA)

  45. 4 6 5 4 7 6 6 8 5 � C G 3 1 1 4 9 2 C ’ 2 1 C ’ 3 1 2 2 55.7 � 54.4 � 10.72 Å 4 6 5 4 7 6 6 8 5 3 U = A 1 1 9 4 2 C ’ 2 1 C ’ 3 1 2 57.4 � 56.2 � 10.44 Å Watson-Crick type base pairs

  46. O N H O G=U N N O H N N Deviation from H N Watson-Crick geometry H O N U=G H N O N O H N N Deviation from N H Watson-Crick geometry N H Wobble base pairs

  47. 5'-End 3'-End Sequence GCGGAUUUAGCUCAGDDGGGAGAGCMCCAGACUGAAYAUCUGGAGMUCCUGUGTPCGAUCCACAGAAUUCGCACCA 3'-End 5'-End 70 60 Secondary structure 10 50 20 40 30 � Symbolic notation 5'-End 3'-End A symbolic notation of RNA secondary structure that is equivalent to the conventional graphs

  48. Minimal hairpin loop size: n lp � 3 Minimal stack length: n st � 2 Recursion formula for the number of acceptable RNA secondary structures

  49. Computed numbers of minimum free energy structures over different nucleotide alphabets P. Schuster, Molecular insights into evolution of phenotypes . In: J. Crutchfield & P.Schuster, Evolutionary Dynamics. Oxford University Press, New York 2003, pp.163-215.

  50. RNA sequence Biophysical chemistry: thermodynamics and kinetics Inverse folding of RNA : RNA folding : Biotechnology, Structural biology, design of biomolecules spectroscopy of with predefined biomolecules, structures and functions Empirical parameters understanding molecular function RNA structure Sequence, structure, and function

  51. 5’-end 3’-end A C C (h) S 5 (h) U S 3 G C (h) U A S 4 A U (h) U G S 1 (h) S 2 C G (h) S 8 � 0 G C (h) Free energy G (h) S 9 S 7 A U A A A C C (h) U S 6 A U G G C C Suboptimal conformations A G G U U U G G G A C C A U G A G G G C U G (h) S 0 Minimum of free energy The minimum free energy structures on a discrete space of conformations

  52. hairpin loop hairpin hairpin loop loop stack free stack stack joint end stack bulge free end free end stack internal loop stack hairpin loop hairpin loop multiloop hairpin loop stack stack stack Elements of RNA secondary structures free free as used in free energy calculations end end

  53. 5’-end 3’-end A C C U G C U A A U U G C G G C A U A A A C C U A U G G free energy of stacking < 0 C C A G G U U U G G G A C C A U G A G G G C U G ∑ ∑ ∑ ∑ ∆ 300 = + + + + G g h ( n ) b ( n ) i ( n ) L 0 ij , kl l b i stacks of hairpin bulges internal base pairs loops loops Folding of RNA sequences into secondary structures of minimal free energy, � G 0 300

  54. Maximum matching An example of a dynamic programming computation of the maximum number of base pairs Back tracking yields the structure(s). [i,k-1] [ k+1,j ] i i+1 i+2 k j-1 j j+1 X i,k-1 X k+1,j { ( ) } = + + ρ X max X , max ( X 1 X ) + ≤ ≤ − − + + i , j 1 i , j i k j 1 i , k 1 k 1 , j k , j 1 Minimum free energy computations are based on empirical energies GGCGCGCCCGGCGCC GUAUCGAAAUACGUAGCGUAUGGGGAUGCUGGACGGUCCCAUCGGUACUCCA RNAStudio.lnk UGGUUACGCGUUGGGGUAACGAAGAUUCCGAGAGGAGUUUAGUGACUAGAGG

  55. Maximum matching j 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 i G G C G C G C C C G G C G C C 1 G * * 1 1 1 1 2 3 3 3 4 4 5 6 6 An example of a dynamic programming computation 2 G * * 0 1 1 2 2 2 3 3 4 4 5 6 of the maximum number of base pairs 3 C * * 0 1 1 1 2 3 3 3 4 5 5 4 G * * 0 1 1 2 2 2 3 4 5 5 Back tracking yields the structure(s). 5 C * * 0 1 1 2 2 3 4 4 4 6 G * * 1 1 1 2 3 3 3 4 7 C * * 0 1 2 2 2 2 3 8 C * * 1 1 1 2 2 2 [i,k-1] [ k+1,j ] 9 C * * 1 1 2 2 2 10 G * * 1 1 1 2 11 G * * 0 1 1 12 C * * 0 1 i i+1 i+2 k j-1 j j+1 13 G * * 1 14 C * * X i,k-1 X k+1,j 15 C * { ( ) } = + + ρ X max X , max ( X 1 X ) + ≤ ≤ − − + + i , j 1 i , j i k j 1 i , k 1 k 1 , j k , j 1 Minimum free energy computations are based on empirical energies GGCGCGCCCGGCGCC GUAUCGAAAUACGUAGCGUAUGGGGAUGCUGGACGGUCCCAUCGGUACUCCA RNAStudio.lnk UGGUUACGCGUUGGGGUAACGAAGAUUCCGAGAGGAGUUUAGUGACUAGAGG

  56. 1. Komplexität in der Biologie 2. Evolutionäre Optimierung und Lernen im Ensemble 3. Strukturbildung von Biomolekülen als kombinatorisches Problem 4. Modellbildung in der Neurobiologie

  57. A single neuron signaling to a muscle fiber

  58. B A Christof Koch, Biophysics of Computation. Information Processing in single neurons. Oxford University Press, New York 1999.

  59. Christof Koch, Biophysics of Computation. Information Processing in single neurons. Oxford University Press, New York 1999.

  60. Christof Koch, Biophysics of Computation. Information Processing in single neurons. Oxford University Press, New York 1999.

  61. d V 1 = − − − − − − 3 4 I g m h ( V V ) g n ( V V ) g ( V V ) Na Na K K l l d t C M dm = α − − β ( 1 m ) m m m dt dh = α − − β ( 1 h ) h h h dt dn = α − − β ( 1 n ) n n n dt Hogdkin-Huxley OD equations Hhsim.lnk Simulation of space independent Hodgkin-Huxley equations: Voltage clamp and constant current

Recommend


More recommend