massive runaway stars
play

Massive runaway stars: probes for stellar physics and dynamics - PowerPoint PPT Presentation

Massive runaway stars: probes for stellar physics and dynamics Mathieu Renzo Collaborators: E. Zapartas, S. E. de Mink, Y. G otberg, S. Justham, R. J. Farmer, R. G. Izzard, S. Toonen, D. J. Lennon, H. Sana, E. Laplace, S. N. Shore, F .


  1. Massive runaway stars: probes for stellar physics and dynamics Mathieu Renzo Collaborators: E. Zapartas, S. E. de Mink, Y. G¨ otberg, S. Justham, R. J. Farmer, R. G. Izzard, S. Toonen, D. J. Lennon, H. Sana, E. Laplace, S. N. Shore, F . Evans ...

  2. What is a runaway star? Runaway stars Tail of the velocity distribution Blaauw 61 v 3D [ km s − 1 ] Hipparcos velocity distribution for young ( � 50 Myr) stars, Tetzlaff et al. 11, 2 see also Zwicky 57, Blaauw, 93, Gies & Bolton 86, Leonard 91, Renzo et al. 19a, 19b

  3. What is a runaway star? Runaway stars Tail of the velocity distribution Blaauw 61 Fraction per type O: ∼ 10 − 20 % Be: ∼ 13 % v 3D [ km s − 1 ] Hipparcos velocity distribution for young ( � 50 Myr) stars, Tetzlaff et al. 11, 2 see also Zwicky 57, Blaauw, 93, Gies & Bolton 86, Leonard 91, Renzo et al. 19a, 19b

  4. Two ways to produce fast massive stars Binary supernova disruption Dynamical ejection from cluster Massive runaway origins ... ... is there a problem ? 3

  5. Most common massive binary evolution Credits: ESO, L. Calc ¸ada, M. Kornmesser, S.E. de Mink 4

  6. Spin up, pollution, and rejuvenation The binary disruption shoots out the accretor Spin up: Packet ’81, Cantiello et al. ’07, de Mink et al. ’13 Pollution: Blaauw ’93 Rejuvenation: Hellings ’83, Schneider et al. ’15

  7. What exactly disrupts the binary? 86 + 11 − 22 % of massive binaries are disrupted Ejecta impact (Tauris & Takens 98, Liu et al. 15) Loss of SN ejecta (Blaauw ’61) Renzo et al. 19b, Kochanek et al. 19, 6 Eldridge et al. 11, De Donder et al. 97

  8. What exactly disrupts the binary? 86 + 11 − 22 % of massive binaries are disrupted Ejecta impact (Tauris & Takens 98, Liu et al. 15) SN Natal kick (Shklovskii 70, Katz 75, Janka 13, 17) Loss of SN ejecta (Blaauw ’61) Renzo et al. 19b, Kochanek et al. 19, 6 Eldridge et al. 11, De Donder et al. 97

  9. Do BHs receive kicks ? NO YES ⇒ most remain together with ⇒ most are single and we can’t their widowed companion see them... 7

  10. Do BHs receive kicks ? NO YES ⇒ most remain together with ⇒ most are single and we can’t their widowed companion see them... ...but we can see the “widowed” companions 7

  11. A way to constrain BH kicks with Gaia Massive runaways mass function ( v ≥ 30 km s − 1 , M ≥ 7 . 5 M ⊙ ) 1.0 Probability × 10 5 0.0 # stars 1.0 0.0 1.0 0.0 0 10 20 30 40 50 60 70 M dis [ M ⊙ ] Mass 8 Numerical results publicly available at: Renzo et al. 19b http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/624/A66

  12. A way to constrain BH kicks with Gaia Massive runaways mass function ( v ≥ 30 km s − 1 , M ≥ 7 . 5 M ⊙ ) 1.0 Probability × 10 5 0.0 # stars 1.0 0.0 BH momentum kick ( σ kick = 265 km s − 1 , fiducial) 1.0 0.0 0 10 20 30 40 50 60 70 M dis [ M ⊙ ] Mass 8 Numerical results publicly available at: Renzo et al. 19b http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/624/A66

  13. A way to constrain BH kicks with Gaia Massive runaways mass function ( v ≥ 30 km s − 1 , M ≥ 7 . 5 M ⊙ ) 1.0 Probability × 10 5 0.0 BH: σ kick = 100 km s − 1 NS: σ kick = 265 km s − 1 # stars 1.0 (no fallback for BH) 0.0 BH momentum kick ( σ kick = 265 km s − 1 , fiducial) 1.0 0.0 0 10 20 30 40 50 60 70 M dis [ M ⊙ ] Mass 8 Numerical results publicly available at: Renzo et al. 19b http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/624/A66

  14. A way to constrain BH kicks with Gaia Massive runaways mass function ( v ≥ 30 km s − 1 , M ≥ 7 . 5 M ⊙ ) BH kick=NS kick ( σ kick = 265 km s − 1 ) 1.0 (no fallback) Probability × 10 5 0.0 BH: σ kick = 100 km s − 1 NS: σ kick = 265 km s − 1 # stars 1.0 (no fallback for BH) 0.0 BH momentum kick ( σ kick = 265 km s − 1 , fiducial) 1.0 0.0 0 10 20 30 40 50 60 70 M dis [ M ⊙ ] Mass 8 Numerical results publicly available at: Renzo et al. 19b http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/624/A66

  15. Kicks do not change companion velocity 86 + 11 − 22 % of massive binaries are disrupted v dis ≃ v orb 2 before the SN SN Natal kick (Shklovskii 70, Katz 75, Janka 13, 17) Renzo et al. 19b, Kochanek et al. 19, 9 Eldridge et al. 11, De Donder et al. 97

  16. Velocity distribution: Runaways Velocity respect to the pre-explosion binary center of mass 10 Numerical results publicly available at: Renzo et al. 19b http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/624/A66

  17. Velocity distribution: Walkaways Velocity respect to the pre-explosion binary center of mass 11 Numerical results publicly available at: Renzo et al. 19b http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/624/A66

  18. Velocity distribution: Walkaways Under-production of runaways because mass transfer widens the binaries and makes the secondary more massive Velocity respect to the pre-explosion binary center of mass 11 Numerical results publicly available at: Renzo et al. 19b http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/624/A66

  19. Summary of ejection mechanisms Binary SN disruption • Ejects initially less massive star • Requires SN kick • Final v ≃ v orb 2 • Most binaries are disrupted • Leaves binary signature fast rotation, He/N enrichment, lower apparent age 12

  20. Outline Binary supernova disruption Dynamical ejection from cluster Massive runaway origins ... ... is there a problem ? 13

  21. Dynamical ejection from cluster N-body interactions (typically) least massive thrown out. Binaries matter... • Cross section ∝ a 2 ≫ R 2 ∗ • (Binding) Energy reservoir Poveda et al. 67 ...but don’t necessarily leave imprints! Credits: C. Rodriguez

  22. Typical outcome of dynamical interactions Fast runaway (the least massive of the three) Tighter and more massive binary e.g., Fujii & Portegies-Zwart 11 15

  23. The most massive runaways known M = 137 . 8 + 27 . 5 − 15 . 9 M ⊙ − 69 ◦ 00 ′ VFTS72 M = 97 . 6 + 22 . 2 − 23 . 1 M ⊙ 02 ′ VFTS682 Declination (J2000) 04 ′ 06 ′ VFTS16 R136 08 ′ M = 91 . 6 + 11 . 5 − 10 . 5 M ⊙ 39 m 00 s 30 s 38 m 00 s 30 s 5 h 37 m 00 s Right Ascension (J2000) 16 Renzo et al. 19a Lennon et al. (incl. MR), 18

  24. The most massive runaways known M = 137 . 8 + 27 . 5 − 15 . 9 M ⊙ − 69 ◦ 00 ′ VFTS72 M = 97 . 6 + 22 . 2 − 23 . 1 M ⊙ 02 ′ VFTS682 Declination (J2000) 04 ′ 06 ′ VFTS16 R136 08 ′ M = 91 . 6 + 11 . 5 − 10 . 5 M ⊙ 39 m 00 s 30 s 38 m 00 s 30 s 5 h 37 m 00 s Right Ascension (J2000) 16 Renzo et al. 19a Lennon et al. (incl. MR), 18

  25. The most massive runaways known M = 137 . 8 + 27 . 5 − 15 . 9 M ⊙ − 69 ◦ 00 ′ VFTS72 M = 97 . 6 + 22 . 2 − 23 . 1 M ⊙ 02 ′ VFTS682 v 2D = 93 ± 15 km s − 1 Declination (J2000) 04 ′ 06 ′ VFTS16 R136 08 ′ M = 91 . 6 + 11 . 5 − 10 . 5 M ⊙ v 2D = 80 ± 11 km s − 1 39 m 00 s 30 s 38 m 00 s 30 s 5 h 37 m 00 s Right Ascension (J2000) 16 Renzo et al. 19a Lennon et al. (incl. MR), 18

  26. The most massive runaways known M = 137 . 8 + 27 . 5 − 15 . 9 M ⊙ − 69 ◦ 00 ′ VFTS72 v 2D = 38 ± 17 km s − 1 M = 97 . 6 + 22 . 2 − 23 . 1 M ⊙ 02 ′ VFTS682 v 2D = 93 ± 15 km s − 1 Declination (J2000) 04 ′ 06 ′ VFTS16 R136 08 ′ M = 91 . 6 + 11 . 5 − 10 . 5 M ⊙ v 2D = 80 ± 11 km s − 1 39 m 00 s 30 s 38 m 00 s 30 s 5 h 37 m 00 s Right Ascension (J2000) 16 Renzo et al. 19a Lennon et al. (incl. MR), 18

  27. Outline Binary supernova disruption Dynamical ejection from cluster Massive runaway origins ... ... is there a problem ? 17

  28. Known ejection mechanisms Binary SN disruption Cluster ejections • Ejects initially less massive star • Happen early on, before SNe • Requires SN kick • Can produce faster stars • Final v ≃ v orb • Least massive thrown out 2 • Most binaries are disrupted • Gaia hint: high efficiency dynamical ejection • Leaves binary signature fast rotation, He/N enrichment, ...Binaries are still important! but might lower apparent age not leave signature 18

  29. Known ejection mechanisms Binary SN disruption Cluster ejections • Ejects initially less massive star • Happen early on, before SNe • Requires SN kick • Can produce faster stars • Final v ≃ v orb • Least massive thrown out 2 • Most binaries are disrupted • Gaia hint: high efficiency dynamical ejection • Leaves binary signature fast rotation, He/N enrichment, ...Binaries are still important! but might lower apparent age not leave signature Relative efficiency ? ∼ 2 3 of runaways from binaries Hoogerwerf et al. 01 18

  30. O type stars runaway fraction # runaways # all stars ≃ Theoretical consensus from Observational claims: (regardless of origin) binaries: ∼ 10 % 0 . 5 + 2 . 1 − 0 . 5 % ∼ 2 3 from binaries Renzo et al. 19b, De Donder et al. 97, Eldridge et al. 11, Hoogerwerf et al. 01 Kochanek et al. 19 19

  31. O type stars runaway fraction # runaways # all stars ≃ Theoretical consensus from Observational claims: (regardless of origin) binaries: ∼ 10 % 0 . 5 + 2 . 1 − 0 . 5 % 0 1 . a l t ∼ 2 e 3 from binaries i k s n Renzo et al. 19b, De Donder et al. 97, Eldridge et al. 11, l i i J Hoogerwerf et al. 01 Kochanek et al. 19 Is it really a problem? • Frame of reference to measure v • Biases in favor of runaways • Gaia hint: high efficiency dynamical ejection 19 • Binary prediction sensitive to SFH

Recommend


More recommend