the final fates of the final fates of massive stars
play

The Final Fates of The Final Fates of Massive Stars Massive Stars - PowerPoint PPT Presentation

The Final Fates of The Final Fates of Massive Stars Massive Stars K. Nomoto (IPMU, U. Tokyo) SNII/Ib Evolution of Stars SNIa The Final Fates of Single Stars M < 0.08 M Brown Dwarf 0.08 -- 0.46 M He White Dwarf 0.46


  1. The Final Fates of The Final Fates of Massive Stars Massive Stars K. Nomoto (IPMU, U. Tokyo)

  2. SNII/Ib Evolution of Stars SNIa

  3. The Final Fates of Single Stars • M < 0.08 M � Brown Dwarf • 0.08 -- 0.46 M � He White Dwarf • 0.46 -- 8 M � C+O White Dwarf • 8 M � -- M up O+Ne+Mg WD • M up -- 10 M � ONeMg–cc-SN + NS • 10 M � -- M ns Fe-cc-Supernova + NS • M ns -- 140 M � Fe-cc-Supernova + BH • 140 -- 300 M � Pair Instability SN • 300 -- 10 5 M � SN + BH • 10 5 M � < M BH(H)

  4. Supernova Observations Distant SNe & Nearby SNe • Photometry � Light Curve (UBVRIJHK) • Spectra (HDS, FOCAS, IRCS, OHS) Circumstellar Matter : ToO Early phase : ToO Nebular phase • Polarization • SN Properties (Mass, Energy, Abundance, Distribution, Shape) • Connections to: Progenitors; GRBs; Metal-Poor Stars

  5. GRB 030329 / SN 2003dh Stanek et al (2003) ; Hjorth et al (2003)

  6. Early Spectra of Supernovae & Hypernovae I c : no H, no strong He, SiII Ia no strong Si O Ca He Ib Hypernovae : broad features Ic 94I blended lines 97ef Hyper “Large mass at -novae 98bw high velocities” Patat et al. (1999)

  7. GRB-SN -19 SN2003dh SN2003lw -18.5 SN1998bw -18 Bolometric Magnitude SN2006aj -17.5 -17 SN1997ef -16.5 SN2002ap -16 SN1994I -15.5 -15 0 5 10 15 20 25 30 35 40 Days since GRB/XRF explosion

  8. 56 Co-decay

  9. CO Star Models for SNe Ic , E, M( 56 Ni)] Parameters [ M ej H-rich He Light Curve Spectra 56 Fe E ∝ M ej τ ~ [ τ dyn • τ diffusion ] 1/ 2 C+ O κ 1/ 2 M ej 56 Co R ~ • V R c M C+ O Si 56 Ni ∝ κ ½ M ej ¾ E - ¼ Fe Collapse 56 Ni E ∝ 3 M ej M ms / M � M C+ O / M � ~ 40 13.8 ~ 35 11.0 ~ 22 5.0

  10. Iwamoto et al. Spectral Fitting: SN1997ef (2000) Too Narrow Features E 51 =E/10 51 erg Normal SN ( E 51 =1 ) Small M ej Hypernova ( E 51 =20 ) Broad Features Large M ej at High Vel.

  11. GRB-Supernovae Three GRB - SNe = all Type Ic Hypernovae E > 10 52 erg ( ~ 10 × normal SN) Large M ms →Black Hole Forming SNe Aspherical E/10 51 erg M( 56 Ni)/M � GRB SN M CO /M � M ms /M � 980425 1998bw 14 40 30 0.4 030329 2003dh 11 35 40 0.35 031203 2003lw 16 45 60 0.55

  12. Main sequence mass vs. Kinetic energy

  13. Main sequence mass vs. 56 Ni mass

  14. Hypernova in Prague

  15. Hypernova in Prague

  16. Nebular Spectra of SNe Ibc 15 SNe Ibc. Previously, only 3! Subaru, 8 m FOCAS Maeda et al. (2008: Science)

  17. Late-Time Spectroscopic Data [OI] emission line Double-Peaks ! • Asphericity is COMMON to core-collapse SNe!

  18. Bipolar vs. Spherical: How distinguished? “ Single-peak ” SN = Point source Geometry @ ~ 1 year λ “ Single-peak ” [OI] 6300 Fe ( 56 Ni) “ Double-peak ” O “ Single-peak ” O Doppler shift 10/20

  19. Non-SN GRB SN-GRB Connection Magnetar GRB-HN

  20. SUBARU/OHS observations of SNe Ia 05W, 03du, 03hv Fe Fe Fe: Flat top! Blue shift! Motohara et al. (2006)

  21. Main sequence mass vs. 56 Ni mass

  22. Faint Supernovae - EMP Stars Fallback: small M(Ni) large [CNO/Fe] � CEMP (1) Jet-like Energetic Explosion Zn, Co enhanced (2) Weak Explosion Mixing & Fallback

  23. Faint SN 2008ha: Spectra(narrow) SN I 2008ha (v ~ 700 km/s) SN Ia Filippenko (1997) Foley et al. (2009)

  24. 5 C O Ne Mg Si S Ar Ca Ti Cr Fe Ni Zn HMP Stars 4 HE1327-2326 [Fe/H]=-5.5 (Frebel et al. 2004) 3 Jet-induced 2 SN models 1 0 High E � -1 [X/Fe] B N F Na Al P Cl K Sc V Mn Co Cu Ga High Co/Fe 5 C O Ne Mg Si S Ar Ca Ti Cr Fe Ni Zn � 4 HE0107-5240 [Fe/H]=-5.3 Fallback � (Christlieb et al. 2002) 3 Small Fe 2 1 0 Dark Hypernova -1 B N F Na Al P Cl K Sc V Mn Co Cu Ga 5 10 15 20 25 30 Tominaga et al. 2007 Z

  25. Jet-induced Nucleosynthesis Jet Special relativistic Jet hydrodynamics (Tominaga et al. BH/NS BH ApJL 2007) cf. “Collapsar” (e.g., MacFadyen et al. 01) Magnetorotational Supernovae (e.g., Moiseenko et al. 06) . E dep : Energy deposition rate (Rotation, B etc.) Same mass and explosion energy 1.5x10 52 erg 40 M �

  26. Ca-rich EMP Star (Lai et al. 2009)

  27. EPM stars in dSph Sextans • Low [Mg/Fe] at [Fe/H] =-2.8 SN Ia ? SN II ? ~10 M � ? ~25 M � ? (Aoki et al. 2009)

  28. SN – GRB – EMP star Connections • GRB-SNe = Hypernovae • Faint SNe – EMP stars (CEMP, Zn, Co) Weak SNe � Non-SN GRB “Dark” Hypernovae • Faint SNe -- Ca-rich SN -- Ca-rich EMP • dSph low Mg/Fe Diversity in SN properties: - ONeMg (AGB)-SN --- SN 2008S (faint IIn) - Most Luminous SN 2006gy (Kawabata’s poster)

  29. 8 – 10 M � Stars Super AGB Stars (1.07 M � < M core < M Ch ) degenerate ONeMg core • 8 M � < M < M up ONeMg White Dwarfs M up ~ 9 M � ( Z ) • M up < M < 10 M � (M core ~ M Ch ) ONeMg Core Collapse SN II due to Electron Capture

  30. Electron Capture in ONeMg Core • 24 Mg(e - , ν ) 24 Na (e - , ν ) 24 Ne ฀ ρ >4.0 × 10 9 gcm -3 • → collapse

  31. Most Luminous Supernova 2006gy Subaru R band (394day) SN 2006gy (R) 2 arcsec M( 56 Ni)=20M � !? M( 56 Ni)=0.4M � Mirror image subtracted SN 1998bw Kawabata, Tanaka, et al. Also Agnoletto et al. (08) (ApJ 2009; also Poster ) Probing Stellar Populations out to the Distant Universe 32

  32. SN2006gy vs PISN PISN

  33. Diversity & Peculiarities of Supernovae vs. Progenitors, Mechanisms * Ultra-Luminous SNe (IIn, II-L, Ic) * Ultra-Faint SNe (IIn): AGB progenitors? * Ic: GRB-SNe, Hypernovae; aspherical * Ib: Energetic (HN-like); aspherical Dusty LBV, WR connection ?

Recommend


More recommend