mass dependence of the heavy quark potential and its
play

Mass dependence of the heavy quark potential and its effects on - PowerPoint PPT Presentation

Mass dependence of the heavy quark potential and its effects on quarkonium states Alexander Laschka Norbert Kaiser Wolfram Weise Physik Department Technische Universit at M unchen XIV International Conference on Hadron Spectroscopy


  1. Mass dependence of the heavy quark potential and its effects on quarkonium states Alexander Laschka Norbert Kaiser Wolfram Weise Physik Department Technische Universit¨ at M¨ unchen XIV International Conference on Hadron Spectroscopy June 14, 2011 Alexander Laschka Mass dependence of the heavy quark potential Hadron 2011 1

  2. Heavy quark-antiquark potential History: phenomenological potential models Fitted to low lying charmonium and bottomonium states Typical shape: “Coulomb-plus-linear” Today: heavy quark-antiquark potential from QCD Characteristic scales of non-relativistic bound states m heavy quark mass hard scale mv heavy quark momentum soft scale mv 2 heavy quark energy ultrasoft scale Effective field theory (EFT) methods QCD ⇒ non-relativistic QCD (NRQCD, pNRQCD, vNRQCD) Topics: Extended range of validity of perturbative potential Spectroscopy at order 1 /m Detailed analysis of the role of quark masses Alexander Laschka Mass dependence of the heavy quark potential Hadron 2011 2

  3. Outline Static quark-antiquark potential Heavy quark potential at order 1 /m Alexander Laschka Mass dependence of the heavy quark potential Hadron 2011 3

  4. The static potential Non-perturbative sector : lattice studies of quenched and full QCD Static QCD potential (from static Wilson loop) G.S. Bali et al., Phys.Rev.D62 (2000) Y. & M. Koma, Nucl.Phys.B769 (2007) 1.0 full -1 quenched 0.8 QCD -1.5 0.6 V 0 (r) [GeV] [V(r)-V(r 0 )]r 0 β = 6.0 0.4 -2 β = 6.2 fit to r > 0.4 r 0 0.2 κ = 0.1560 -2.5 κ = 0.1565 0.0 κ = 0.1570 κ = 0.1575 -0.2 -3 fit to r > 0.4 r 0 β = 6.0 κ = 0.1580 β = 6.3 -0.4 -3.5 -0.6 0.2 0.3 0.4 0.5 0.6 0.0 0.2 0.4 0.6 0.8 1.0 r/r 0 r [fm] 0.10 0.15 0.20 0.25 0.30 r [fm] Sea quark effects important at small distances Alexander Laschka Mass dependence of the heavy quark potential Hadron 2011 4

  5. Fourier transform of the static potential Perturbative sector: static potential is known at three-loop order M. Peter, Phys.Rev.Lett.78 (1997), Y. Schr¨ oder, Phys.Lett.B447 (1999) Three-loop: C. Anzai, Y. Kiyo, Y. Sumino, Phys.Rev.Lett.104 (2010), A. & V. Smirnov, M. Steinhauser, Phys.Rev.Lett.104 (2010) Momentum space � α s ( | � � � 2 q | ) = − 4 πC F α s ( | � q | ) 1 + α s ( | � q | ) q | ) V (0) ( | � ˜ a 1 + a 2 q 2 � 4 π 4 π � α s ( | � � 3 � � � A ln µ 2 q | ) a 3 + 8 π 2 C 3 IR + + . . . 4 π � q 2 where C F = 4 / 3 , C A = 3 , a 1 = 7 , a 2 ≈ 268 . 8 , a 3 ≈ 5199 . 8 ( n f =3) At N 3 LO (three-loop order): infrared divergences ( µ 2 IR ) from ultrasoft gluons Avoid expansion of α s ( | � q | ) about a fixed scale µ Reliable potential from extremely small distances up to r ≈ 0.15 fm needed Alexander Laschka Mass dependence of the heavy quark potential Hadron 2011 5

  6. Potential subtracted (PS) scheme PS scheme with numerical Fourier transform Evaluate numerically (with a low-momentum cutoff µ f ) � � α s ( | � � 2 � � d 3 � q r α s ( | � q | ) + α s ( | � q | ) q | ) V (0) ( � (2 π ) 3 e i� q · � r, µ f ) = − 4 πC F 1 a 1 + a 2 + . . . q 2 � 4 π 4 π | � q | >µf ⇓ ⇓ ⇓ LO NLO NNLO 0 0 � 1 � 1 ( V (0) − const ) [GeV] ( V (0) − const ) [GeV] � 2 � 2 LO � 3 � 3 µ f = 0.7 GeV NLO � 4 � 4 µ f = 1.0 GeV NNLO µ f = 1.5 GeV µ f = 1.0 GeV NNNLO � 5 � 5 0.0 0.1 0.2 0.3 0.4 0.0 0.1 0.2 0.3 0.4 r [fm] r [fm] No free scale parameter µ Unknown constant is moved into the definition of m PS : 2 m pole + V (0) ( r ) = 2 m PS ( µ f ) + V (0) ( r, µ f ) Alexander Laschka Mass dependence of the heavy quark potential Hadron 2011 6

  7. Matching and uncertainty estimate Perturbative potential (here NNLO) and lattice potential matched 0 � � � � � � � � � � pert. QCD � � � V (0) ( r ) − V (0) ( 0.5 fm ) [GeV] � � � � � lattice QCD � 1 � � 2 � 3 matching position � 4 0.0 0.1 0.2 0.3 0.4 0.5 r [fm] Differentiable quark-antiquark potential for distances up to ∼ 1 fm Matching at 0.14 fm gives µ f = 0.9 +0 . 3 − 0 . 2 GeV (for charmonium and bottomonium) Grey band: uncertainty of lattice calculation and uncertainty of α s Dot-dashed curve: continuation of the “Coulomb-plus-linear” fit Alexander Laschka Mass dependence of the heavy quark potential Hadron 2011 7

  8. Bottomonium spectrum Solve the Schr¨ odinger equation with this matched potential Mass [GeV] 10.6 B¯ B -threshold Υ(4S) static potential 10.4 Υ(3S) 10.2 χ bj(2P) 10.0 Υ(2S) 9.8 χ bj(1P) 9.6 9.4 Υ(1S) Model η b(1S) 9.2 1 S 0 3 S 1 1 P 1 3 P j Experiment Single parameter m PS ( 0.908 GeV ) = 4.78 GeV Can be converted to the MS scheme MS masses [GeV] m MS PDG 2010 4.19 +0 . 18 bottom quark 4.20 ± 0.04 − 0 . 06 1.27 +0 . 07 charm quark 1.23 ± 0.04 − 0 . 09 Alexander Laschka Mass dependence of the heavy quark potential Hadron 2011 8

  9. Outline Static quark-antiquark potential Heavy quark potential at order 1 /m Alexander Laschka Mass dependence of the heavy quark potential Hadron 2011 9

  10. Quark-antiquark potential at order 1 /m Expansion in inverse powers of the heavy quark mass m V ( r ) = V (0) ( r ) + V (1) ( r ) + V (2) ( r ) ( m/ 2) 2 + . . . m/ 2 Non-perturbative expression for 1 /m potential is known N. Brambilla et al., Phys.Rev.D63 (2001) 014023 Lattice simulations Efficient method from M. & Y. Koma and H. Wittig Quenched simulation, renormalization issues ( ≈ 15% error estimated) 1.0 Contains a non-perturbative contribution β=5.85 2 ] quenched V (1) (r) - V (1) (r = 0.8r 0 ) [1/r 0 β=6.0 0.5 β=6.2 Fit function ( r ) = − A 2 0.0 V (1) r 2 + B 2 ln r + C 2 ln -0.5 Effective string theory suggests Fit β=6.0 ( 0.53 < r/r 0 < 1.26) logarithmic shape: V (1) ∝ ln r + C -1.0 pert. + linear pert. + ln G. Perez-Nadal, J. Soto, Phys.Rev.D79 (2009) -1.5 0.0 0.5 1.0 1.5 2.0 r / r 0 Alexander Laschka Mass dependence of the heavy quark potential Hadron 2011 10

  11. Quark-antiquark potential at order 1 /m Perturbative potential at order 1 /m ( C F = 4 3 , C A = 3 ) q | ) = C F π 2 α 2 s ( | � q | ) ˜ V (1) ( | � � � ( − C A ) + O ( α s ) 2 | � q | Restricted numerical Fourier transform V (1) ( r ) V (1) ( r ) 0.0 � � � � � � � 0.0 � � � � � pert. QCD � V (1) ( r ) − V (1) ( 0.5 fm ) [GeV 2 ] lattice QCD ( V (1) − const ) [GeV 2 ] � 0.5 � 0.5 � 1.0 � 1.0 f = 0.7 GeV µ ′ � 1.5 � 1.5 f = 1.0 GeV µ ′ matching f = 1.5 GeV µ ′ position � 2.0 � 2.0 0.0 0.1 0.2 0.3 0.4 0.0 0.1 0.2 0.3 0.4 0.5 r [fm] r [fm] Differentiable quark-antiquark potential for distances up to ∼ 1 fm Matching at 0.14 fm gives µ ′ f = 1.6 +0 . 5 − 0 . 8 GeV (for charmonium) f = 1.9 +0 . 4 µ ′ − 0 . 6 GeV (for bottomonium) Grey band: uncertainty of lattice calculation and uncertainty of α s Alexander Laschka Mass dependence of the heavy quark potential Hadron 2011 11

  12. Heavy quark masses at order 1 /m PS ( µ f , µ ′ PS mass needs redefinition m PS ( µ f ) → m � f ) PS ( µ f , µ ′ 8 m C F C A α 2 1 s µ ′ 2 m � f ) ≡ m PS ( µ f ) − f Quark masses from comparison with empirical quarkonium states MS masses [GeV] static static + 1 /m PDG 2010 4.18 +0 . 05 4.19 +0 . 18 bottom quark 4.20 ± 0.04 − 0 . 04 − 0 . 06 1.28 +0 . 07 1.27 +0 . 07 charm quark 1.23 ± 0.04 − 0 . 06 − 0 . 09 Error estimates include: uncertainties in the potentials (static and order 1 /m ) uncertainties from matching to experimental spectra Alexander Laschka Mass dependence of the heavy quark potential Hadron 2011 12

  13. Spectroscopy 10.6 B -threshold Bottomonium spectrum B¯ 3 S 1 10.4 3S Υ(3S) 1 S 0 Tightly bound η b (1S) and Υ (1S) 10.2 Mass [GeV] states are most sensitive to 3 S 1 Υ(2S) 2S 10.0 1 /m -effects 1 S 0 9.8 Hyperfine effects (h.f.) added 9.6 phenomenologically (one-gluon 1S 3 S 1 Υ(1S) exchange) with α eff η b (1S) s = 0.3 9.4 1 S 0 1 S 0 3 S 1 9.2 . . . (work in progress) static + h.f. experiment +1 /m to be substituted by the full 10.6 1 /m 2 potential B¯ B -threshold Mass [GeV] 10.4 3 P j χ bj (2P) String tension σ = 1.01 GeV/fm 2P 10.2 3 D j Υ(1D) 1D 10.0 Different strategies needed above 3 P j χ bj (1P) 1P BB threshold 9.8 3 P j 3 D j static + h.f. experiment +1 /m Alexander Laschka Mass dependence of the heavy quark potential Hadron 2011 13

  14. Spectroscopy 3.8 Charmonium spectrum 3 S 1 D¯ D -threshold 2S 3.7 ψ (2S) η c (2S) 3.6 1 S 0 Downward shift from V (1) in the 3.5 1S states ( η c and J / ψ ) to large Mass [GeV] 3.4 3.3 1 /m 2 effects significant 3.2 1S J / ψ (1S) 3.1 3 S 1 Hyperfine effects (h.f.) added 3.0 η c (1S) phenomenologically (one-gluon 2.9 1 S 0 exchange) with α eff 2.8 s = 0.3 1 S 0 3 S 1 2.7 static + h.f. experiment +1 /m . . . (work in progress) to be substituted by the full 3.8 D¯ D -threshold 1 /m 2 potential 3.7 Mass [GeV] 3.6 1 P 1 , 3 P j h c (1P) χ cj (1P) 1P 3.5 String tension σ = 1.01 GeV/fm 3.4 3.3 Different strategies needed above 1 P 1 3 P j 3.2 static + h.f. experiment +1 /m DD threshold Alexander Laschka Mass dependence of the heavy quark potential Hadron 2011 14

Recommend


More recommend