charm and and bottom bottom heavy baryon heavy baryon
play

Charm and and bottom bottom Heavy baryon Heavy baryon Charm - PowerPoint PPT Presentation

Charm and and bottom bottom Heavy baryon Heavy baryon Charm mass spectrum from from mass spectrum Lattice QCD with with 2+1 flavors 2+1 flavors Lattice QCD Heechang Na Heechang Na with Steven Gottlieb with Steven Gottlieb Indiana


  1. Charm and and bottom bottom Heavy baryon Heavy baryon Charm mass spectrum from from mass spectrum Lattice QCD with with 2+1 flavors 2+1 flavors Lattice QCD Heechang Na Heechang Na with Steven Gottlieb with Steven Gottlieb Indiana University Indiana University Aug-21-2007 INT Summer School 2007 , U of Washington, Seattle

  2. Outline • Introduction • Lattices and propagators • Formalism – Operators – Two point function – Taste mixing? • Data analysis • Results – Charmed heavy baryons – Bottom heavy baryons – Doubly heavy baryons • Future study

  3. ● Introduction • Singly and doubly charmed heavy baryons • Singly and doubly bottom heavy baryons : * * * , , , , ' , , , � � � � � � � � H H H H H H H H * * , , , � � � � HH HH HH HH • Lattice QCD with 2+1 flavors PDG, J. Phys. G 33, 1 (2006)

  4. • New measurements

  5. ● Lattices and Propagators • MILC coarse lattices – 20 3 × 64, a ≈ 0.12 fm – 3 ensembles with four different time sources • m l = 0.007 m s = 0.05 • m l = 0.01 m s = 0.05 • m l = 0.02 m s = 0.05 • Propagators – 9 different staggered light valence quarks • 0.005 ~ 0.02 – 3 different staggered strange valence quarks • 0.024, 0.03, 0.0415 – One valence clover heavy quark • k = 0.122 (Tuned for charm quark) – 007 : 545 confs 010 : 591 confs 020 : 459 confs • k = 0.086 (for bottom) – 007 : 554 confs 010 : 590 confs 020 : 452 confs

  6. ● Formalism • Operators (K.C. Bowler et al ., PRD 54, 3619 (1996)) aT b c aT b c O ( C ) , O ( C ) = � � � � � = � � � � � 5 abc 1 5 2 H abc 1 2 H µ µ Jp s π Content Baryon Λ h l l h l l h O 5 0 + Ξ h l s h l s h l l h l l h Σ h 1/2+ l s h l s h Ξ’ h Ω h s s h s s h Ξ hh l h h l h h s h h s h h Ω hh O µ 1 + l l h l l h Σ * h l s h l s h Ξ * h 3/2+ Ω * s s h s s h h l h h l h h Ξ * hh s h h s h h Ω * hh

  7. • Two point function with a Staggered light quark and a Wilson heavy quark • Conversion between a Naive propagator and a Staggered propagator! G ( x ; y ) ( x ) G ( y ) + = � � � � ˆ G I G ( x , y ) = 4 � � G ( x , y ) ( x ) ( y ) G ( x , y ) + = � � � � x / a where ( x ) ( ) � � = � µ µ µ • Now, we can write the Heavy-Light correlator + ( x ) W � sk (0) > = [ ] � e ip � x � e ip � x + G H ( x ;0) < W � sc Tr � sc G � (0; x ) � sk x x [ ] � e ip � x � c ' c ( x ;0)} G � cc ' (0; x ) tr{ � sc � + ( x ) � sk + G H = x c , c ' where W � = � H ( x ) �� ( x ) • (M. Wingate et al. PRD67, 054505 (2003))

  8. • Two point function for the heavy baryon r r r r r i p x C ( p , t ) e � � O ( x , t ) O ( 0 , 0 ) � = 5 5 5 r x r r i p x aa ' T bb ' cc ' e � � tr [ G ( x , 0 ) C G ( x , 0 )( C ) + ] G ( x , 0 ) � = � � � � abc a ' b ' c ' 1 5 2 5 H r x r r r i p x T C ( p , t ) e � � tr [ ( x ) C ( x )( C ) + ] � = � � � � � � 5 abc a ' b ' c ' 5 5 r x aa ' bb ' cc ' G ( x , 0 ) G ( x , 0 ) G ( x , 0 ) � 1 2 H � � T x x x x tr [ ( x ) C ( x )( C ) ] tr [( 1 ) + ( 1 ) + ] + � � � � = � 1 3 � 1 3 5 5 4 = Finally, r r r i p x aa ' bb ' cc ' C ( p , t ) e 4 G ( x , 0 ) G ( x , 0 ) G ( x , 0 ) � � � = � � 5 abc a ' b ' c ' 1 2 H � � r x This is for O 5 , what about O µ ?

  9. -- Surprisingly, C ij is a diagonal matrix for i and j indices r r r i p x T C ( p , t ) e tr [ ( x ) C ( x )( C ) ] � � + � = � � � � � � ij abc a ' b ' c ' i j r x aa ' bb ' cc ' G ( x , 0 ) G ( x , 0 ) G ( x , 0 ) t x x x ( x ) � � = � � 1 � 2 � 3 1 2 H � � 0 1 2 3 tr[ � T ( x ) C � i � ( x )( C � j ) + ] = 4( � 1) x i � ij C ij ( r � e � i r � r x 4( � 1) x i � ij � abc � a ' b ' c ' G 1 � p aa ' ( x ,0) G 2 � bb ' ( x ,0) G H cc ' ( x ,0) p , t ) = r x 3 / 2 1 / 2 C ( t ) P C ( t ) P C ( t ) = + ij ij 3 / 2 ij 1 / 2 1 1 ( ) C ( t ) C ( t ) = � � � � + � � ij i j 3 / 2 i j 1 / 2 3 3 m t m t C ( t ) e � , C ( t ) e � � 3 / 2 � 1 / 2 3 / 2 1 / 2

  10. • Taste mixing? T ( x ) C � µ � 2 ( x )) aT C � µ � 2 b ) � H c O µ = � abc ( � 1 D µ = ( � 1 � ( x ) = � � � � a ( x ) � a ( x ) � : Naive quark � � � � a : 4 copies of staggered quark q � i , a ( y ) = 1 � � � i ( � ) � a ( y + � ) q � i , a : Staggered quark in taste basis 8 x 0 � 1 x 1 � 2 x 2 � 3 x 3 � � ( x ) = � 0 x = y + � a : Copy index � : Staggered spin index � a ( y + � ) = 2 � + i � ( � ) q � i , a ( y ) � : Naive spin index � i : Taste index � ( x ) = � � � � a ( � ) � a ( y + � ) = � � � a ( � )2 � + i � ( � ) q � i , a ( y ) �

  11. • Di-quark operator T ( x ) C � µ � 2 ( x )) conti ( y ) = � ( � 1 T ( x ) C � µ � 2 ( x )) D µ D µ = ( � 1 � � b ( � )2 � + j � ( � ) q � j , b ( y ) conti ( y ) = � 2 � + i � ( � ) q � i , a ( y ) � Ta � � ( � )( C � µ ) � � � � � � D µ � � µ ( C � µ ) a b � + j � ( � ) q � j , b ( y ) � 4 � + i � ( � ) q � i , a ( y )( � 1) = � � µ � + j � ( � ) = 4( C � µ ) �� � ( � µ C � 1 ) i j � � + i � ( � )( � 1) � conti ( y ) = 16 q � i , a ( y )( C � µ ) �� � ( � µ C � 1 ) i j q � j , b ( y )( C � µ ) a b D µ conti ( y ) = 16 q � i , a ( y )( C � 5 ) �� � ( � 5 C � 1 ) i j q � j , b ( y )( C � 5 ) a b D 5 Overlap with 1 + and 0 + spin state with single taste K. Nagata et al., arXiv:0707.3537 a , b : Copy index i , j : Taste index � , � : Staggered spin index � � , � � : Naive spin index

  12. • Two-point function of the di-quark operator conti ( y ;0) = < D µ conti ( y ) D conti (0) > C µ � � = 16 2 Tr[ G 1 ( y ,0)( C � µ ) � ( C � µ ) + G 2 ( y ,0)( C � � ) + � ( C � � )] + � b � � ( C � µ ) ab � ( C � µ ) � b � a � b � a a = 16 2 Tr[ G 1 ( y ,0)( C � µ ) � ( C � µ ) + G 2 ( y ,0)( C � � ) + � ( C � � )] � Tr[( C � µ )( C � � ) + ] Tr[( C � µ )( C � � ) + ] = 0 � µ � � � 4 µ = � � The delta function appears, because the cancellations between copy indices.

  13. ● Data analysis • Fit model function ~ ~ ~ ~ mt m ( T t ) t m t t m ( T t ) P ( t ) Ae Ae ( 1 ) A e ( 1 ) A e � � � � � � = + + � + � ~ ~ ~ ~ * * * * * m t * m ( T t ) t * m t t * m ( T t ) A e A e ( 1 ) A e ( 1 ) A e � � � � � � + + + � + � • Correlated least squares fit • Error estimation – 1000 bootstrap samples • Linear chiral extrapolation

  14. ● Results • 1/2 + singly charmed heavy baryons

  15. • 1/2 + singly charmed heavy baryons : Other groups (Quenched calculations) 12 3 × 32 : 720 confs (a s ≈ 0.22) 24 3 × 48 : 60 confs 14 3 × 38 : 442 confs (a s ≈ 0.18) (a ≈ 0.068) 18 3 × 46 : 325 confs (a s ≈ 0.15) R. Lewis et al., K.C. Bowler et al., PRD 64,094509 (2001) PRD 54,3619 (1996)

  16. • 1/2 + singly bottom heavy baryons Recent measurements from CDF and D0

  17. • 1/2 + singly bottom heavy baryons : Other groups (Quenched calculations) K.C. Bowler et al.,PRD 54,3619 (1996) A. Ali Khan et al., PRD 62,054505 (2000) N. Mathur et al., PRD 66,014502 (2002)

  18. • Doubly charmed heavy baryons (Preliminary)

  19. • Doubly bottom heavy baryons (Preliminary)

  20. Future study • Fine lattice – a ≈ 0.09, m l =0.2m s , m l =0.4m s • Increase statistics • More about error analysis • Finite size effect • Discretization errors • Excited states (3/2 + ,1/2 - ,3/2 - )

  21. • Mass differences between bottom and charm hadrons

  22. • 1/2 + singly charmed heavy baryons conti. M phy = M cal + Δ M kin = | r p | 2 � [M cal ( r ) � M cal (0)] 2 p 2[M cal ( r p ) � M cal (0)] Constant Mass Shift = Average (M exp - M cal )

  23. • 1/2 + singly bottom heavy baryons conti.

  24. • Extrapolation of light valence quark mass 0.00148 Confidence level ~ 40% in averag e Real quark masses are quotations from MILC. PRD 70, 114501 (2004)

  25. • Interpolation of Strange quark mass and extrapolation of Light sea quark mass 0.039 0.00148

  26. • Full QCD extrapolation

Recommend


More recommend