energy dependence of multiplicity fluctuations in heavy
play

Energy Dependence of Multiplicity Fluctuations in Heavy Ion - PowerPoint PPT Presentation

Energy Dependence of Multiplicity Fluctuations in Heavy Ion Collisions Benjamin Lungwitz, IKF Universitt Frankfurt for the NA49 collaboration Outline Introduction Analysis of energy dependence Energy dependence of multiplicity


  1. Energy Dependence of Multiplicity Fluctuations in Heavy Ion Collisions Benjamin Lungwitz, IKF Universität Frankfurt for the NA49 collaboration

  2. Outline ● Introduction ● Analysis of energy dependence ● Energy dependence of multiplicity fluctuations – Acceptance scaling – Model comparison ● Summary 2 Benjamin Lungwitz, IKF Universität Frankfurt

  3. Motivation ● Anomalies in energy dependence seen at low SPS energies -> hint for onset of deconfinement ? ● Models predict large fluctuations near onset of deconfinement or critical point ω 〉 T (MeV) + π + 〈 K / 300 〉 + K 〈 0.2 ? 200 0.1 A+A: NA49 100 A+A: AGS p+p ( p ): NA49 0 K AGS p+p RHIC S + RHIC K 0 2 2 1 10 10 1 10 10 s (GeV) s (GeV) √ s NN (GeV) NN NN 3 Benjamin Lungwitz, IKF Universität Frankfurt

  4. Centrality Selection A Proj VCAL Veto calorimeter E Veto ≈ (A Proj - N P Proj )*E kin N P Proj ● Veto calorimeter -> projectile spectators, number of projectile participants N P Proj ● Target spectators not measured in NA49 ! 4 Benjamin Lungwitz, IKF Universität Frankfurt

  5. System Size Dependence of n- Fluctuations 158A GeV Pb+Pb, 158 A GeV Var(n)/<n> 4 negative 2 HSD 1.5 UrQMD 3 1 targ P ω ω ω ω 2 p+p 0.5 Pb+Pb 1 0 50 100 150 PROJ N P 0 see talk of M. Rybczynski 0 50 100 150 200 proj N see talk of M. Gorenstein, P t V. Konchakovskyi et al. ● N P Proj experimentally fixed, N P Targ fluctuate Phys. Rev. C 73 (2006) 034902 ● Peripheral collisions: Large N P Targ fluctuations may cause large ω in forward hemisphere (e.g. mixing) ● Central collisions: N P Targ fluctuations negligible 5 Benjamin Lungwitz, IKF Universität Frankfurt

  6. Track Selection 158 A GeV h - 2 [GeV/c] 2 1 T p 1.8 0 300 1.8 0.9 1.6 1.6 0.8 0 250 1.4 T 1.4 0.7 p 1.2 200 1.2 0.6 1 1 0.5 150 0.8 0.8 0.4 0.6 100 0.6 0.3 0.4 0.4 0.2 50 0.2 0.2 0.1 0 0 0 0 -4 -3 -2 -1 0 1 2 3 4 -150 -100 -50 0 50 100 150 y( π ) φ [deg] 1.4<y<1.6 y in cms system ● Only hadrons in a limited forward acceptance (projectile hemisphere) were selected (158A GeV: equal to M. Rybczynski) – Safe acceptance (no problems with efficiency etc.) ● (p T , φ) cut: ● y-cut: 20 A – 80 A GeV: 1<y<y beam C. Alt et al., 158A GeV: 1.08<y<2.57 Phys.Rev.C70:064903, 2004 6 Benjamin Lungwitz, IKF Universität Frankfurt

  7. Experimental Acceptance 0.2 p 0.18 small 0.16 0.14 standard 0.12 0.1 h - 0.08 0.06 0.04 0.02 0 6 8 10 12 14 16 18 20 s NN ● Strong energy dependence of experimental acceptance – Difficult to compare different energies ● Small acceptance (1<y<(y beam -1)/2+1) used to study acceptance effects 7 Benjamin Lungwitz, IKF Universität Frankfurt

  8. Multiplicity Distributions h - at N P Proj =195 40A GeV 158A GeV 2 800 2 data/poisson data/poisson 1600 Pb+Pb Pb+Pb 1.8 700 1400 1.6 1.5 600 1200 1.4 500 1.2 1000 1 1 400 800 0.8 300 600 0.6 0.5 200 400 0.4 100 200 0.2 0 0 0 0 0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70 60 80 100 120 140 160 180 60 80 100 120 140 160 180 - - - - N(h ) N(h ) N(h ) N(h ) black: data all data are red: Poisson distribution 2 data/poisson preliminary ! 8000 p+p 1.8 7000 1.6 ● Multiplicity distributions for 6000 1.4 1.2 5000 central collisions are 1 4000 0.8 3000 significantly narrower than 0.6 2000 0.4 Poisson distribution ! 1000 0.2 0 0 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 - - N(h ) N(h ) 8 Benjamin Lungwitz, IKF Universität Frankfurt

  9. Centrality Dependence at all Energies 1.2 1.2 1.2 ω ω ω h - 1.15 1.15 1.15 20A GeV 30A GeV 40A GeV 1.1 1.1 1.1 1.05 1.05 1.05 1 1 1 0.95 0.95 0.95 0.9 0.9 0.9 0.85 0.85 0.85 0.8 0.8 0.8 160 165 170 175 180 185 190 195 200 205 160 165 170 175 180 185 190 195 200 205 160 165 170 175 180 185 190 195 200 205 P P P N N N Proj Proj Proj ● Not corrected for 1.2 1.2 ω ω 80A GeV 158A GeV 1.15 1.15 resolution of veto 1.1 1.1 calorimeter 1.05 1.05 1 1 ● 190<N P Proj <200 0.95 0.95 0.9 0.9 selected 0.85 0.85 0.8 0.8 160 165 170 175 180 185 190 195 200 205 160 165 170 175 180 185 190 195 200 205 P P N N Proj Proj 9 Benjamin Lungwitz, IKF Universität Frankfurt

  10. Corrections and Biases ● Correction applied for finite size of centrality bins  bw =〈 n 〉 Var  N P Proj  〈 N P Proj 〉 2 in the order of 2% ● Known uncorrected biases: – N P Proj fluctuations due to finite Veto calorimeter resolution (estimated to be <2%) – A possible N P Targ fluctuations contribution to projectile hemisphere -> They both increase fluctuations 10 Benjamin Lungwitz, IKF Universität Frankfurt

  11. Energy Dependence of n- Fluctuations 1.3 ω 1.3 h + ω 1.3 ω h - h +- 1.25 1.25 1.25 1.2 1.2 1.2 1.15 1.15 blue: Pb+Pb 1.15 1.1 1.1 1.1 red: p+p 1.05 1.05 1.05 1 1 1 0.95 0.95 0.95 0.9 0.9 0.9 0.85 0.85 0.85 0.8 6 8 10 12 14 16 18 20 0.8 0.8 6 8 10 12 14 16 18 20 6 8 10 12 14 16 18 20 s (GeV) (GeV) (GeV) NN s s NN NN Note: different acceptance for different energies ! only statistical errors shown ● Scaled variance for h + , h - smaller than 1 ● ω for h +- < 1 for low energies, ω +− > 1 for higher energies ● ω (p+p) ≈ ω (central Pb+Pb) at 158A GeV 11 Benjamin Lungwitz, IKF Universität Frankfurt

  12. Effect of Limited Acceptance ● Assuming no correlations in momentum space  acc = 4 ­ 1 ⋅ p  acc  1 (*) ● ω (4 π ) > 1 <=> ω (acc) > 1, ω (4 π ) < 1 <=> ω (acc) < 1 ● Formula (*) not valid if more than one daughter particle of a decay is 1.5 (acc) detected 1.4 ω 1.3 – very few particles decay into 2 h - 1.2 1.1 – many particles decay into h + and h - 1 0.9 0.8 0.7 0.6 π + 0.5 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 p(acc) π - ρ 12 Benjamin Lungwitz, IKF Universität Frankfurt

  13. Acceptance Scaling for h - 1.2 ω 20A GeV 1.15 h - 30A GeV 40A GeV <ω (4 π )> ≈ 0.3 1.1 80A GeV 158A GeV 1.05 1 small and standard 0.95 acceptance 0.9 0.85 0.8 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 p ● Data comparable with acceptance scaling and no (or weak) energy dependence of multiplicity fluctuations in 4 π 13 Benjamin Lungwitz, IKF Universität Frankfurt

  14. Statistical Model 1.4 1.4 2 ch + - ω ω ω 1.8 1.2 1.2 1.6 RHIC 1 1 1.4 RHIC h + RHIC SPS SPS 1.2 0.8 0.8 1 0.6 SPS 0.6 0.8 AGS AGS h +- h - 0.6 0.4 Primordial GCE 0.4 Primordial GCE Primordial GCE AGS Final GCE Final GCE Final GCE 0.4 Primordial CE Primordial CE Primordial CE 0.2 0.2 0.2 Final CE Final CE Final CE 0 0 0 3 3 2 3 2 2 10 10 1 10 10 10 1 10 10 10 1 10 S S S NN NN NN 4 π acceptance ! see talk of M. Gorenstein,V. Begin M. Hauer et. al. nucl-th/0606036 ● Grand canonical ensemble (no charge conservation): – ω >1 for all energies ● Canonical ensemble (B,Q,S conserved): – ω <1 for h + and h - , ω crosses 1 for h +- ● Final state: resonance decays 14 Benjamin Lungwitz, IKF Universität Frankfurt

  15. Statistical Model and Data 1.3 ω 1.3 ω h - 1.25 data 1.25 h + data canonical model 1.2 canonical model 1.2 grand canonical model grand canonical model 1.15 1.15 1.1 1.1 1.05 1.05 1 1 0.95 0.95 0.9 0.9 0.85 0.85 0.8 0.8 6 8 10 12 14 16 18 20 6 8 10 12 14 16 18 20 (GeV) (GeV) s s NN NN ● 4 π values scaled down to exp. acceptance assuming no correlations in momentum space (eg. due to resonance decays) ● Grand canonical model overpredicts fluctuations ● Canonical model works better, but its fluctuations are also too high (energy conservation needed ?) 15 Benjamin Lungwitz, IKF Universität Frankfurt

  16. String Hadronic Models: Venus, HSD 1.3 1.3 ω ω h - h + 1.25 1.25 data data Venus Venus 1.2 1.2 HSD HSD 1.15 1.15 1.1 1.1 1.05 1.05 1 1 0.95 0.95 0.9 0.9 0.85 0.85 0.8 0.8 6 8 10 12 14 16 18 20 6 8 10 12 14 16 18 20 s (GeV) s (GeV) NN NN HSD: V. Konchakovski, priv. com. ● HSD: works good for 20A – 40A GeV, but overpredicts data at 80A and 158A GeV ● Venus overpredicts data for energies > 20A GeV 16 Benjamin Lungwitz, IKF Universität Frankfurt

  17. String Hadronic Models: Venus, HSD (2) 1.7 ω h +- data 1.6 Venus 1.5 HSD 1.4 1.3 1.2 1.1 1 0.9 0.8 6 8 10 12 14 16 18 20 (GeV) s NN ● All string hadronic models overpredict fluctuations of h +- for energies > 20A GeV 17 Benjamin Lungwitz, IKF Universität Frankfurt

  18. Summary ● Multiplicity fluctuations in central Pb+Pb collisions for h + , h - and h +- at 20, 30, 40, 80 and 158A GeV were analysed ● ω − scales with p(acc) for h - at all energies -> weak energy dependence of ω in 4 π [ ω(4π) ≈ 0.3 ] ● ω + and ω - smaller than 1 for all energies -> Grand canonical ensemble does not work ! ● Canonical statistical model shows similar trend as the data but ω (data) < ω (CE) ● String hadronic models (Venus, HSD) work for lower energies (20-40A GeV) but fail for higher (80-158A GeV) 18 Benjamin Lungwitz, IKF Universität Frankfurt

  19. Backup 19 Benjamin Lungwitz, IKF Universität Frankfurt

Recommend


More recommend