marinus a kaashoek half a century of operator theory in
play

MARINUS A. KAASHOEK: half a century of operator theory in - PowerPoint PPT Presentation

MARINUS A. KAASHOEK: half a century of operator theory in Amsterdam Opening Lecture IWOTA 2017 (Chemnitz) by Harm Bart Erasmus University Rotterdam 1 Born 1937 Ridderkerk 2 Studied in Leiden Oldest University in The Netherlands Founded


  1. MARINUS A. KAASHOEK: half a century of operator theory in Amsterdam Opening Lecture IWOTA 2017 (Chemnitz) by Harm Bart Erasmus University Rotterdam 1

  2. Born 1937 Ridderkerk 2

  3. Studied in Leiden Oldest University in The Netherlands Founded in 1575 3

  4. PhD in 1964 (Leiden) Postdoc University of California at Los Angeles, 1965 - 1966 VU University Amsterdam 1966 – 2002 Emeritus Professor 2002 – · · · (active!) 4

  5. Hence the title: half a century of operator theory in Amsterdam 5

  6. Many Ph.D students ( 17 ) MatScinet: 234 publications Co-author of 9 books Lots of collaborators 6

  7. Research interests mentioned in CV: Analysis and Operator Theory, and various connections between Operator Theory Matrix The- ory and Mathematical Systems Theory In particular, Wiener-Hopf integral equations and Toeplitz operators and their nonstationary variants State space methods for problems in Analysis Metric constrained interpolation problems, and various extension and completion problems for partially defined matrices or operators, including relaxed commutant lifting problems. 7

  8. In the available time impossible to cover all aspects all connections all references Aim: Just to give an impression on what Kaashoek has been working on Emphasis on ideas / less on specific results Not all the time mentioning of co-authors involved List of them (MathSciNet): 8

  9. 9

  10. PhD in 1964 Supervisor A.C. Zaanen 10

  11. Doctoral Thesis: Closed linear operators on Banach spaces One of the issues: Local behavior of operator pencils λS − T 11

  12. Sufficient conditions for dim Ker ( λS − T ) , codim Im ( λS − T ) to be constant on deleted neighborhood of the origin Determination size of the neighborhood Extension work of Gohberg/Krein and Kato 12

  13. Postdoc University of California at Los Angeles, 1965 - 1966 Upon return to Amsterdam: Suggestion to HB: try generalization pencils λS − T → analytic operator functions W ( λ ) (admitting local power series expansions) 13

  14. Important tool: linearization / reduction to the pencil case: local properties W ( λ ) ↔ local properties λ S W − T W Suitable operators S W and T W on ’big(ger)’ spaces Defined in terms of power series expansion ∞ � λ k W k W ( λ ) = k =0 Inspired by (among others, but mainly) Karl-Heinz Foerster ( † 29–1–2017) 14

  15. 15

  16. Local properties W ( λ ) ↔ local properties pencil λ S W − T W Drawbacks: local behavior instead of global behavior pencil λ S W − T W instead of spectral item λ I W − T W Helpful in some circumstances: S W left invertible 1975: Enters Israel Gohberg 16

  17. 17

  18. Gohberg, Kaashoek, Lay: Global reduction to spectral case λ I − T ( killing two birds with one stone ) Linearization by equivalence after extension � � W ( λ ) 0 = E ( λ )( λ I − T W ) F ( λ ) 0 I Z E ( λ ) , F ( λ ) analytic equivalence functions (Many) properties W ( λ ) ↔ properties spectral pencil λ I − T W 18

  19. Further analysis Underlying concept: realization Representation in the form W ( λ ) = D + C ( λI X − A ) − 1 B (: Y → Y ) Important case: D = I Y 19

  20. NB Misprint on next slide: y ( λ ) = ( D + C ( λ − A ) − 1 B � should be y ( λ ) = ( D + C ( λ − A ) − 1 B ) � u ( λ ) � 20

  21. Input u Output y 21

  22. Background (2): Livsic-Brodskii characteristic function Characteristic functions of Livsic-Brodskii type, i.e., KK ∗ = 1 I H + 2 iK ∗ ( λI G − A ) − 1 K, 2 i ( A − A ∗ ) H, G Hilbert spaces Designed to handle operators not far from being selfadjoint Invariant subspace problem Echo: Bart, Gohberg, Kaashoek: Operator polynomials as inverses of characteristic functions, 1978 First paper in first issue of the newly founded IEOT 22

  23. Realization takes different concrete forms depending on analyt- icity/continuity properties W ( λ ) For instance: • W ( λ ) analytic on bounded Cauchy domain and continuous to- ward its boundary Γ ( D identity operator) • Wλ ) analytic on bounded open set, no boundary requirement (Mitiagin, 1978) • Wλ ) rational matrix function, analytic at infinity (Systems Theory) 23

  24. Connection with realization W ( λ ) = D + C ( λI X − A ) − 1 B Linearization by equivalence after two-sided extension: � � � � λI X − ( A − BD − 1 C ) W ( λ ) 0 0 = E ( λ ) F ( λ ) 0 0 I X I Y (Many) properties W ( λ ) ↔ properties spectral pencil λI X − A × A × = A-BD − 1 C W ( λ ) − 1 = D − 1 − D − 1 C ( λI X − A × ) − 1 BD − 1 24

  25. Realization, factorization, invariant subspaces W ( λ ) = I Y + C ( λI X − A ) − 1 B W ( λ ) − 1 = I Y - C ( λI X − A × ) − 1 B ( D = I Y for simplicity) M invariant subspace A M × invariant subspace A × = A − BC Matching: X = M ∔ M × 25

  26. Induces factorization W ( λ ) = W 1 ( λ ) W 2 ( λ ) W 1 ( λ ) = I Y + C ( λI X − A ) − 1 ( I − P ) B W 2 ( λ ) = I Y + CP ( λI X − A ) − 1 B P = projection of X = M ∔ M × onto M × along M W 1 ( λ ) − 1 = I Y − C ( I − P )( λI X − A ) − 1 B W 2 ( λ ) − 1 = I Y − C ( λI X − A ) − 1 PB Factorization Principle Bart/Gohberg/Kaashoek and Van Dooren (1978) 26

  27. Opportunities: • Choice realization W ( λ ) = D + C ( λI X − A ) − 1 B for instance minimal • Choice (matching) invariant subspaces M and M × for instance spectral subspaces Corresponds to factorizations with special properties pertinent to the particular application at hand • Stability of factorizations ↔ stability invariant subspaces 27

  28. Example: The (vector-valued) Wiener-Hopf integral equation � ∞ φ ( t ) − k ( t − s ) φ ( s ) ds = f ( t ) , t ≥ 0 0 Kernel function k ∈ L n × n ( −∞ , ∞ ) 1 Given function f ∈ L n 1 [0 , ∞ ) Desired solution function φ ∈ L n 1 [0 , ∞ ) 28

  29. Associated operator H : L n 1 [0 , ∞ ) → L n 1 [0 , ∞ ) � ∞ ( Hφ )( t ) = φ ( t ) − k ( t − s ) φ ( s ) ds, t ≥ 0 0 � + ∞ e iλt k ( t ) dt Symbol: W ( λ ) = I n − −∞ Continuous on the real line lim λ ∈ R , | λ |→∞ W ( λ ) = I n (Riemann-Lebesgue) Fredholm properties H ↔ factorization properties W ( λ ) 29

  30. H : L n 1 [0 , ∞ ) → L n 1 [0 , ∞ ) invertible � W ( λ ) admits canonical Wiener-Hopf factorization W ( λ ) = W − ( λ ) W + ( λ ) Factors W − ( λ ) and W + ( λ ) satisfying certain analyticity, continuity and invertibility conditions on lower and upper half plane, respectively Needed for effective description inverse H : concrete knowledge W − ( λ ) and W + ( λ ) 30

  31. Application ’state space method’ involving the use of realization Assumption: W ( λ ) rational n × n matrix function Realization W ( λ ) = I n + C ( λI m − A ) − 1 B A no real eigenvalue (continuity on the real line) (Real line splits the non-connected spectrum of the m × m matrix A ) 31

  32. Application Factorization Principle: H : L n 1 [0 , ∞ ) → L n 1 [0 , ∞ ) invertible � A × = A − BC no real eigenvalue and C m = M ∔ M × • M = spectral subspace A / upper half plane • M × = spectral subspace A × / lower half plane 32

  33. Description inverse of H : � ∞ ( H − 1 f )( t ) = f ( t ) + t ≥ 0 κ ( t, s ) f ( s ) ds, 0  + iC e − itA × P e isA × B,   s < t, κ ( t, s ) =  – iC e − itA × ( I m − P ) e isA × B,  s > t. P = projection of C m = M ∔ M × onto M × along M NB: semigroups entering the picture! 33

  34. Non-invertible case Realization W ( λ ) = I n + C ( λI m − A ) − 1 B A no real eigenvalue Wiener-Hopf operator H Fredholm ⇔ A × no real eigenvalue Fredholm characteristics: dim Ker H = dim ( M ∩ M × ) codim Im H = codim ( M + M × ) index H = dim Ker H − codim Im H = dim M − codim M × 34

  35. Situation when W ( λ ) = I n + C ( λI m − A ) − 1 B does not allow for a canonical Wiener-Hopf factorization Non-canonical factorization: � λ − i � κ 1   0 · · · 0 λ + i       � λ − i � κ 2  .  . 0 .   λ + i     W ( λ ) = W − ( λ ) W + ( λ )   . ...   . . 0         � λ − i � κ n 0 · · · 0 λ + i κ 1 ≤ κ 2 ≤ · · · ≤ κ n : factorization indices (unique) Can be described explicitly in terms of A, B, C and M, M × 35

  36. Similar approach works for • Block Toeplitz operators • Singular integral equations • Riemann-Hilbert boundary value problem 36

  37. Impression of additional applications Titles Part IV-VII from the monograph A State Space Approach to Canonical Factorization with Applications (Bart, Gohberg, Kaashoek, Ran, OT 200, 2010): • Factorization of selfadjoint matrix functions • Riccati equations and factorization • Factorization with symmetries (Etc.) 37

  38. Also in the monograph: application tot the transport equation Integro-differential equation modeling radiative transfer in stellar atmosphere Can be written as Wiener-Hopf integral equation with operator valued kernel Employs infinite dimensional version of the Factorization Principle Invertibility of the associated operator involves matching of two specific spectral subspaces of two concrete self-adjoint operators (albeit w.r.t. different inner products) 38

Recommend


More recommend