Sampling the region of interest • Tensor product of value levels for each dimension � Nested for -loops � Cost is exponential in #dims • Separate range specification from sample generation Steven Bergner - Making choices in multi-dimensional parameter spaces - PhD thesis defence 8
Sampling the region of interest • Tensor product of value levels for each dimension � Nested for -loops � Cost is exponential in #dims • Separate range specification from sample generation Steven Bergner - Making choices in multi-dimensional parameter spaces - PhD thesis defence 8
Paraglide summary • Longitudinal study showed use of parameter space partitioning • Requirements informed follow-up projects • Alternative user interaction � Dimensionally reduced slider embedding � Mixing board • Video demo Steven Bergner - Making choices in multi-dimensional parameter spaces - PhD thesis defence 9
Model adjustment at different levels • User-driven experimentation: Use cases for paraglide • Criteria optimization: Lighting design • Theoretical analysis: Sampling in volume rendering • Discretizing a region: Lattices with rotational dilation • Summary and conclusion Steven Bergner - Making choices in multi-dimensional parameter spaces - PhD thesis defence 10
Model adjustment at different levels • User-driven experimentation: Use cases for paraglide • Criteria optimization: Lighting design • Theoretical analysis: Sampling in volume rendering • Discretizing a region: Lattices with rotational dilation • Summary and conclusion Steven Bergner - Making choices in multi-dimensional parameter spaces - PhD thesis defence 10
Roadmap From light to colour Efficient light model Designing spectra for lights and materials Evaluation Applications 11 Bergner, Drew, Möller - Generating Light and Reflectance Spectra - ACM Trans. on Graphics 2009
From Light to Colour !"#$% ! !"" !#" !$" !%" &'" &&" &(" $)" $!" $*" *"" +,-./.012345067 &'(!')%*+)' ! !"" !#" !$" !%" &'" &&" &(" $)" $!" $*" *"" +,-./.012345067 12
From Light to Colour !"#$% !,- ! !"" !#" !$" !%" &'" &&" &(" $)" $!" $*" *"" +,-./.012345067 &'(!')%*+)' !"#$"%&"'($)*+& ! !"" !#" !$" !%" &'" &&" &(" $)" $!" $*" *"" +,-./.012345067 ! !"" !#" !$" !%" &'" &&" &(" $)" $!" $*" *"" +,-./.012345067 12
From Light to Colour !"#$% !,- ! !"" !#" !$" !%" &'" &&" &(" $)" $!" $*" *"" +,-./.012345067 '()*+,-./01-*),!-# &'(!')%*+)' !"# ! !"#$%&$% $%""& ! !"#$"%&"'($)*+& ! !"" !#" !$" !%" &'" &&" &(" $)" $!" $*" *"" +,-./.012345067 '()" ! ! !"" !#" !$" !%" &'" &&" &(" $)" $!" $*" *"" +,-./.012345067 12
From Light to Colour !"#$% !,- ! !"" !#" !$" !%" &'" &&" &(" $)" $!" $*" *"" +,-./.012345067 '()*+,-./01-*),!-# &'(!')%*+)' !"# ! !"#$%&$% $%""& ! !"#$"%&"'($)*+& ! !"" !#" !$" !%" &'" &&" &(" $)" $!" $*" *"" +,-./.012345067 '()" ! ! !"" !#" !$" !%" &'" &&" &(" $)" $!" $*" *"" +,-./.012345067 = B G R 12
From Light to Colour !"#$% !,- ! !"" !#" !$" !%" &'" &&" &(" $)" $!" $*" *"" +,-./.012345067 '()*+,-./01-*),!-# &'(!')%*+)' !"# ! !"#$%&$% $%""& ! !"#$"%&"'($)*+& ! !"" !#" !$" !%" &'" &&" &(" $)" $!" $*" *"" +,-./.012345067 '()" ! ! !"" !#" !$" !%" &'" &&" &(" $)" $!" $*" *"" +,-./.012345067 component-wise = � product in RGB B G R 12
Light 1 Use for Visualization Light 2 13
Light 1 Use for Visualization { Metamers � Different Spectra give same RGB Light 2 13
Light 1 Use for Visualization Metamers � Different Spectra give same RGB Constant Colours � Metamers under changing Light 2 light 13
Light 1 Use for Visualization Metamers � Different Spectra give same RGB Constant Colours � Metamers under changing Light 2 light Metameric Blacks � Spectra give RGB triple = 0 13
Light 1 Use for Visualization Metamers � Different Spectra give same RGB Constant Colours � Metamers under changing Light 2 light Metameric Blacks � Spectra give RGB triple = 0 Effective choice of light & material palette needed! 13
Roadmap From light to colour Efficient light model Designing spectra for lights and materials Evaluation Applications 14
Roadmap From light to colour Efficient light model Designing spectra for lights and materials Evaluation Applications 15
Illumination Dependent Colour Picker ? ? ? ? ? ? ? 16
Illumination Dependent Colour Picker ? ? ? ? ? ? ? 16
Illumination Dependent Colour Picker ? ? ? ? ? ? ? 16
Illumination Dependent Colour Picker ? ? ? ? ? ? ? 16
Illumination Dependent Colour Picker 16
Quality Criteria Colour – Fit the desired colour or metamer Smoothness – Regularize solution and reduce extrema Minimal error in linear model – Minimal colour difference when illumination bounce is computed in linear subspace Positivity – Produce physically plausible spectra 17
Quality Criteria 18
Quality Criteria Instead of equation system for spectrum � M � x = � x y Solve normal equation x � M � x − � y � argmin � 18
Quality Criteria Instead of equation system for spectrum � M � x = � x y Solve normal equation x � M � x − � y � argmin � m red c r � � � � – Colour: � diag ( � argmin � S ) � c g m green x − � � x � � m blue c b � � 18
Quality Criteria Instead of equation system for spectrum � M � x = � x y Solve normal equation x � M � x − � y � argmin � m red c r � � � � – Colour: � diag ( � argmin � S ) � c g m green x − � � x � � m blue c b � � − 1 2 − 1 0 0 0 · · · � � 0 − 1 2 − 1 0 0 – Smoothness: · · · � � � argmin � � � . ... x − . x � � . � � 0 0 − 1 2 − 1 0 · · · 18
Quality Criteria Instead of equation system for spectrum � M � x = � x y Solve normal equation x � M � x − � y � argmin � m red c r � � � � – Colour: � diag ( � argmin � S ) � c g m green x − � � x � � m blue c b � � − 1 2 − 1 0 0 0 · · · � � 0 − 1 2 − 1 0 0 – Smoothness: · · · � � � argmin � � � . ... x − . x � � . � � 0 0 − 1 2 − 1 0 · · · Weight the criteria and combine as stacked matrix – Global minimum error solution via pseudo-inverse of M – Positivity through quadratic programming 18
Roadmap From light to colour Efficient light model Designing spectra for lights and materials Evaluation Applications 19
Materials and lighting Steven Bergner - Making choices in multi-dimensional parameter spaces - PhD thesis defence 20
Materials and lighting Given: Output Goal: Input Steven Bergner - Making choices in multi-dimensional parameter spaces - PhD thesis defence 20
Materials and lighting Given: Output Goal: Input lights )*+,-./01)$# "&# ? ? " !"" #"" $"" %"" ? reflectances ? ? ? ? • 3x5 combination colours • 7x31 component SPDs with 3 components each Steven Bergner - Making choices in multi-dimensional parameter spaces - PhD thesis defence 20
Materials and lighting Given: Output Goal: Input lights )*+,-./01)$# 23,-04-./0' 23,-04-./0( )*+,-./01)$# ' ' "&# "&# "&# "&# ? ? " " " !"" #"" $"" %"" !"" #"" $"" %"" !"" #"" $"" %"" " ' !"" #"" $"" %"" ? "&# " !"" #"" $"" %"" reflectances ? "&' " !"" #"" $"" %"" ? "&# " !"" #"" $"" %"" ? "&( " !"" #"" $"" %"" "&# ? " !"" #"" $"" %"" • 3x5 combination colours • 7x31 component SPDs with 3 components each Steven Bergner - Making choices in multi-dimensional parameter spaces - PhD thesis defence 20
Image based re-lighting a) 21
Image based re-lighting b) a) 21
Image based re-lighting b) a) c) 21
Applications in Graphics and Visualization D65 daylight sodium hp 0.2 0.4 0.1 0.2 0 0 400 500 600 700 400 500 600 700 refl 1 0.8 0.6 0.4 0.2 0 400 500 600 700 refl 2 1 0.5 0 400 500 600 700 Additional texture details appear under changing illumination 22
Model adjustment at different levels • User-driven experimentation: Use cases for paraglide • Criteria optimization: Lighting design • Theoretical analysis: Sampling in volume rendering • Filling a region: Lattices with rotational dilation • Summary and conclusion Steven Bergner - Making choices in multi-dimensional parameter spaces - PhD thesis defence 23
Model adjustment at different levels • User-driven experimentation: Use cases for paraglide • Criteria optimization: Lighting design • Theoretical analysis: Sampling in volume rendering • Filling a region: Lattices with rotational dilation • Summary and conclusion Steven Bergner - Making choices in multi-dimensional parameter spaces - PhD thesis defence 23
Volume Rendering • Map data value f to optical properties using a transfer function g(f(x)) • Then shading+compositing Opacity g f f Steven Bergner - Making choices in multi-dimensional parameter spaces - PhD thesis defence 24
Volume Rendering • Map data value f to optical properties using a transfer function g(f(x)) • Then shading+compositing Opacity g f f Steven Bergner - Making choices in multi-dimensional parameter spaces - PhD thesis defence 24
Volume Rendering • Map data value f to optical properties using a transfer function g(f(x)) • Then shading+compositing Opacity g f f Steven Bergner - Making choices in multi-dimensional parameter spaces - PhD thesis defence 24
Volume Rendering • Map data value f to optical properties using a transfer function g(f(x)) • Then shading+compositing Opacity g f f Steven Bergner - Making choices in multi-dimensional parameter spaces - PhD thesis defence 24
Volume Rendering • Map data value f to optical properties using a transfer function g(f(x)) • Then shading+compositing Opacity g f f Steven Bergner - Making choices in multi-dimensional parameter spaces - PhD thesis defence 24
Intuition Analysis Application Example of g(f(x)) Steven Bergner - Making choices in multi-dimensional parameter spaces - PhD thesis defence 25
Intuition Analysis Application Example of g(f(x)) Original function f(x) Steven Bergner - Making choices in multi-dimensional parameter spaces - PhD thesis defence 25
Intuition Analysis Application Example of g(f(x)) Original function f(x) Transfer function g(y) Steven Bergner - Making choices in multi-dimensional parameter spaces - PhD thesis defence 25
Intuition Analysis Application Example of g(f(x)) Original function f(x) g(f(x)) sampled by Transfer function g(y) Steven Bergner - Making choices in multi-dimensional parameter spaces - PhD thesis defence 25
Intuition Analysis Application Example of g(f(x)) Original function f(x) g(f(x)) sampled by Transfer function g(y) g(f(x)) sampled by Steven Bergner - Making choices in multi-dimensional parameter spaces - PhD thesis defence 25
Intuition Analysis Application Composition in Frequency Domain y y · · Steven Bergner - Making choices in multi-dimensional parameter spaces - PhD thesis defence 26
Intuition Analysis Application Composition in Frequency Domain · Steven Bergner - Making choices in multi-dimensional parameter spaces - PhD thesis defence 26
Intuition Analysis Application Composition in Frequency Domain · H ( k ) = 1 � � G ( l ) e il · f ( x ) dle − ik · x dx 2 π R R Steven Bergner - Making choices in multi-dimensional parameter spaces - PhD thesis defence 26
Intuition Analysis Application Composition in Frequency Domain · H ( k ) = 1 � � G ( l ) e il · f ( x ) dle − ik · x dx 2 π R R Steven Bergner - Making choices in multi-dimensional parameter spaces - PhD thesis defence 26
Intuition Analysis Application Composition in Frequency Domain · H ( k ) = 1 � � G ( l ) e il · f ( x ) dle − ik · x dx 2 π R R H ( k ) = 1 � � e il · f ( x ) e − ik · x dxdl G ( l ) 2 π R R Steven Bergner - Making choices in multi-dimensional parameter spaces - PhD thesis defence 26
Intuition Analysis Application Composition in Frequency Domain · H ( k ) = 1 � � G ( l ) e il · f ( x ) dle − ik · x dx 2 π R R H ( k ) = 1 � � e il · f ( x ) e − ik · x dxdl G ( l ) 2 π R R Steven Bergner - Making choices in multi-dimensional parameter spaces - PhD thesis defence 26
Intuition Analysis Application Composition in Frequency Domain · H ( k ) = 1 � � G ( l ) e il · f ( x ) dle − ik · x dx 2 π R R H ( k ) = 1 � � e il · f ( x ) e − ik · x dxdl G ( l ) 2 π R R � e i ( l · f ( x ) − k · x ) dx P ( k, l ) = R Steven Bergner - Making choices in multi-dimensional parameter spaces - PhD thesis defence 26
Intuition Analysis Application Visualizing P(k,l) � H ( k ) = 1 e i ( l · f ( x ) − k · x ) dx 2 π < G ( · ) , P ( k, · ) > P ( k, l ) = R Steven Bergner - Making choices in multi-dimensional parameter spaces - PhD thesis defence 27
Intuition Analysis Application Visualizing P(k,l) � H ( k ) = 1 e i ( l · f ( x ) − k · x ) dx 2 π < G ( · ) , P ( k, · ) > P ( k, l ) = R Steven Bergner - Making choices in multi-dimensional parameter spaces - PhD thesis defence 27
Intuition Analysis Application Visualizing P(k,l) � H ( k ) = 1 e i ( l · f ( x ) − k · x ) dx 2 π < G ( · ) , P ( k, · ) > P ( k, l ) = R Steven Bergner - Making choices in multi-dimensional parameter spaces - PhD thesis defence 27
Intuition Analysis Application Visualizing P(k,l) � H ( k ) = 1 e i ( l · f ( x ) − k · x ) dx 2 π < G ( · ) , P ( k, · ) > P ( k, l ) = R Steven Bergner - Making choices in multi-dimensional parameter spaces - PhD thesis defence 27
Intuition Analysis Application Visualizing P(k,l) � H ( k ) = 1 e i ( l · f ( x ) − k · x ) dx 2 π < G ( · ) , P ( k, · ) > P ( k, l ) = R Steven Bergner - Making choices in multi-dimensional parameter spaces - PhD thesis defence 27
Intuition Analysis Application Visualizing P(k,l) � H ( k ) = 1 e i ( l · f ( x ) − k · x ) dx 2 π < G ( · ) , P ( k, · ) > P ( k, l ) = R Steven Bergner - Making choices in multi-dimensional parameter spaces - PhD thesis defence 27
Intuition Analysis Application Visualizing P(k,l) � H ( k ) = 1 e i ( l · f ( x ) − k · x ) dx 2 π < G ( · ) , P ( k, · ) > P ( k, l ) = R Steven Bergner - Making choices in multi-dimensional parameter spaces - PhD thesis defence 27
Intuition Analysis Application Visualizing P(k,l) � H ( k ) = 1 e i ( l · f ( x ) − k · x ) dx 2 π < G ( · ) , P ( k, · ) > P ( k, l ) = R Steven Bergner - Making choices in multi-dimensional parameter spaces - PhD thesis defence 27
Intuition Analysis Application Visualizing P(k,l) � H ( k ) = 1 e i ( l · f ( x ) − k · x ) dx 2 π < G ( · ) , P ( k, · ) > P ( k, l ) = R Steven Bergner - Making choices in multi-dimensional parameter spaces - PhD thesis defence 27
Intuition Analysis Application Visualizing P(k,l) � H ( k ) = 1 e i ( l · f ( x ) − k · x ) dx 2 π < G ( · ) , P ( k, · ) > P ( k, l ) = R Steven Bergner - Making choices in multi-dimensional parameter spaces - PhD thesis defence 27
Intuition Analysis Application Visualizing P(k,l) � H ( k ) = 1 e i ( l · f ( x ) − k · x ) dx 2 π < G ( · ) , P ( k, · ) > P ( k, l ) = R Steven Bergner - Making choices in multi-dimensional parameter spaces - PhD thesis defence 27
Intuition Analysis Application Visualizing P(k,l) � H ( k ) = 1 e i ( l · f ( x ) − k · x ) dx 2 π < G ( · ) , P ( k, · ) > P ( k, l ) = R Steven Bergner - Making choices in multi-dimensional parameter spaces - PhD thesis defence 27
Intuition Analysis Application Visualizing P(k,l) Steven Bergner - Making choices in multi-dimensional parameter spaces - PhD thesis defence 28
Intuition Analysis Application Visualizing P(k,l) Steven Bergner - Making choices in multi-dimensional parameter spaces - PhD thesis defence 28
Intuition Analysis Application Visualizing P(k,l) Steven Bergner - Making choices in multi-dimensional parameter spaces - PhD thesis defence 28
Intuition Analysis Application Visualizing P(k,l) • Slopes of lines in P(k,l) are related to 1/f‘(x) Steven Bergner - Making choices in multi-dimensional parameter spaces - PhD thesis defence 28
Intuition Analysis Application Visualizing P(k,l) • Slopes of lines in P(k,l) are related to 1/f‘(x) • Extremal slopes bounding the wedge are 1/max(f’) Steven Bergner - Making choices in multi-dimensional parameter spaces - PhD thesis defence 28
Intuition Analysis Application Method of stationary phase � e i ( l · f ( x ) − k · x ) dx P ( k, l ) = R Steven Bergner - Making choices in multi-dimensional parameter spaces - PhD thesis defence 29
Intuition Analysis Application Method of stationary phase � e i ( l · f ( x ) − k · x ) dx P ( k, l ) = R Steven Bergner - Making choices in multi-dimensional parameter spaces - PhD thesis defence 29
Intuition Analysis Application Method of stationary phase � e i ( l · f ( x ) − k · x ) dx P ( k, l ) = R Steven Bergner - Making choices in multi-dimensional parameter spaces - PhD thesis defence 29
Intuition Analysis Application Method of stationary phase � e i ( l · f ( x ) − k · x ) dx P ( k, l ) = R • Taylor expansion around points of stationary phase • Exponential drop-off at maximum l · max | f ′ | = k Steven Bergner - Making choices in multi-dimensional parameter spaces - PhD thesis defence 29
Intuition Analysis Application Method of stationary phase � e i ( l · f ( x ) − k · x ) dx P ( k, l ) = R • Taylor expansion around points of stationary phase • Exponential drop-off at maximum l · max | f ′ | = k Steven Bergner - Making choices in multi-dimensional parameter spaces - PhD thesis defence 29
Intuition Analysis Application Adaptive Raycasting Same number of samples Steven Bergner - Making choices in multi-dimensional parameter spaces - PhD thesis defence 30
Intuition Analysis Application Adaptive Raycasting SNR Ground-truth: computed at a fixed sampling distance of 0.06125 Steven Bergner - Making choices in multi-dimensional parameter spaces - PhD thesis defence 31
Recommend
More recommend