magnetic force microscopy
play

Magnetic Force Microscopy Leon Abelmann and Martin Siekman Systems - PowerPoint PPT Presentation

University of Twente Magnetic Force Microscopy Leon Abelmann and Martin Siekman Systems and Materials for Information storage MESA + Research Institute University of Twente Systems and Materials for Information storage Constanta Summerschool,


  1. University of Twente Magnetic Force Microscopy Leon Abelmann and Martin Siekman Systems and Materials for Information storage MESA + Research Institute University of Twente Systems and Materials for Information storage Constanta Summerschool, Sep 2005 (September 14, 2005)

  2. Introduction 2,2(2) Contents • Before break: MFM Operation – Principle of MFM – MFM tips • After break: – Instrumentation – Artefacts Leon Abelmann Constanta Summerschool, Sep 2005 Slide 1

  3. Principle of MFM 5,5(3) Principle of MFM Control Electronics Computer Detector Magnetic element Cantilever M z Specimen 3 dimensional Scanner x y Leon Abelmann Constanta Summerschool, Sep 2005 Slide 2

  4. Principle of MFM 7,7(2) Magnetic Force Microscopy 500 nm Leon Abelmann Constanta Summerschool, Sep 2005 Slide 3

  5. Principle of MFM 12,12(5) Change in resonance Leon Abelmann Constanta Summerschool, Sep 2005 Slide 4

  6. Principle of MFM 15,15(3) Amplitude, Phase, Frequency Amplitude [nm] amplitude 0 frequency Phase difference [deg] 0 phase -90 -180 , Drive frequency [Hz] f res f res Leon Abelmann Constanta Summerschool, Sep 2005 Slide 5

  7. Principle of MFM 18,18(3) Image formation Transform stray field to Fourier space: � ∞ � ∞ � H ( x, y, z ) e − i ( xk x + yk y ) dxdy H ( k x , k y , z ) = −∞ −∞ H ( k x , k y , z ) = exp( −| k | z ) · � � H ( k x , k y , 0) Leon Abelmann Constanta Summerschool, Sep 2005 Slide 6

  8. Principle of MFM 28,0(10) MFM Demonstrator Leon Abelmann Constanta Summerschool, Sep 2005 Slide 7

  9. Principle of MFM 31,3(3) Tip transfer function b Wavelength l [nm] 1000 200 100 20 10 non-magnetic bar h 125 10 Force derivative [mN/m] Frequency shift [Hz] magnetic 1 12.5 coating s 0.1 1.25 x 0 z 0 0.01 0.13 t 0.001 l 5 6 7 8 10 10 10 10 -1 Spatial frequency [m ] F z ( k , z ) = − µ 0 M t · b sinc ( k x b 2 ) · S sinc ( k y S � 2 ) · � H ( k , z ) Leon Abelmann Constanta Summerschool, Sep 2005 Slide 8

  10. Principle of MFM 41,0(10) MFM Demonstrator 2 Leon Abelmann Constanta Summerschool, Sep 2005 Slide 9

  11. Principle of MFM 51,10(10) Resolution versus distance Leon Abelmann Constanta Summerschool, Sep 2005 Slide 10

  12. MFM Probes 53,12(2) Probes Leon Abelmann Constanta Summerschool, Sep 2005 Slide 11

  13. MFM Probes 55,14(2) AFM sputtered � • Sputtered CoCr(X) hard disk materials • Low/high moment: layer thickness • Fe, NiFe for low coercivity tips Leon Abelmann Constanta Summerschool, Sep 2005 Slide 12

  14. MFM Probes 57,16(2) AFM side coated � • Co, NiFe evaporated • Shape anisotropy • Stable domain structure Leon Abelmann Constanta Summerschool, Sep 2005 Slide 13

  15. MFM Probes 59,18(2) CantiClever Cantilever Tip plane MFM tip Cross-section determined by layer thicknesses Leon Abelmann Constanta Summerschool, Sep 2005 Slide 14

  16. MFM Probes 61,20(2) SEM Images cantilever Leon Abelmann Constanta Summerschool, Sep 2005 Slide 15

  17. MFM Probes 63,22(2) SEM Images tip Leon Abelmann Constanta Summerschool, Sep 2005 Slide 16

  18. Break 0,0(0) Break Leon Abelmann Constanta Summerschool, Sep 2005 Slide 17

  19. Instrumentation 2,2(2) Beam Deflection �������� ����� • Laser • LED Leon Abelmann Constanta Summerschool, Sep 2005 Slide 18

  20. Instrumentation 4,4(2) Interferometer ������������ ����������� • factor 10 better sensitivity • difficult to align • better reflection coatings Leon Abelmann Constanta Summerschool, Sep 2005 Slide 19

  21. Instrumentation 7,7(3) Thermal Noise � � � ∂F � � 4 kTc ∆ B ∆ = ω n Q � z 2 osc � ∂z th rms Leon Abelmann Constanta Summerschool, Sep 2005 Slide 20

  22. Instrumentation 10,10(3) Drift Noise (nm or Hz) D B’ D B 1/(N D t) 1/ D t frequency (Hz) Leon Abelmann Constanta Summerschool, Sep 2005 Slide 21

  23. Instrumentation 13,13(3) Vacuum • Reduce damping, improves Q-factor by 10 5 • Sound isolation • Remove most of water film (meniscus) Be careful with break-down (Paschen curve) Leon Abelmann Constanta Summerschool, Sep 2005 Slide 22

  24. Instrumentation 16,16(3) Magnetic Field Application of magnetic fields • On sample – Simple – Only in-plane – Low field – Heating • On microscope – Requires very small microscope Leon Abelmann Constanta Summerschool, Sep 2005 Slide 23

  25. Instrumentation 18,18(2) Instrumentation Leon Abelmann Constanta Summerschool, Sep 2005 Slide 24

  26. Instrumentation 20,20(2) Switching Field Distribution 400 300 Dots reversed 200 100 0 -300 -200 -100 0 100 200 300 Field (kA/m) Leon Abelmann Constanta Summerschool, Sep 2005 Slide 25

  27. MFM Artefacts 22,22(2) Correct domain image Leon Abelmann Constanta Summerschool, Sep 2005 Slide 26

  28. MFM Artefacts 24,24(2) Correct bit pattern Leon Abelmann Constanta Summerschool, Sep 2005 Slide 27

  29. MFM Artefacts 26,26(2) Interference stripes Leon Abelmann Constanta Summerschool, Sep 2005 Slide 28

  30. MFM Artefacts 28,28(2) Topographic contrast Leon Abelmann Constanta Summerschool, Sep 2005 Slide 29

  31. MFM Artefacts 30,30(2) Topographic contrast 2 Leon Abelmann Constanta Summerschool, Sep 2005 Slide 30

  32. MFM Artefacts 31,31(1) Interaction • Sample disturbs tip • Tip disturbs sample • Reversible/Irreversible Leon Abelmann Constanta Summerschool, Sep 2005 Slide 31

  33. MFM Artefacts 33,33(2) Tip reversal on strong sample Leon Abelmann Constanta Summerschool, Sep 2005 Slide 32

  34. MFM Artefacts 35,35(2) Tip reversal in external field Leon Abelmann Constanta Summerschool, Sep 2005 Slide 33

  35. MFM Artefacts 37,37(2) Domain in tip Leon Abelmann Constanta Summerschool, Sep 2005 Slide 34

  36. MFM Artefacts 39,39(2) Sample disturbance • Reversible (susceptibility contrast) • Irreversible Leon Abelmann Constanta Summerschool, Sep 2005 Slide 35

  37. MFM Artefacts 41,41(2) Susceptibility contrast Leon Abelmann Constanta Summerschool, Sep 2005 Slide 36

  38. MFM Artefacts 43,43(2) Move domain walls Leon Abelmann Constanta Summerschool, Sep 2005 Slide 37

  39. MFM Artefacts 45,45(2) Disturb sample Leon Abelmann Constanta Summerschool, Sep 2005 Slide 38

  40. MFM Artefacts 47,47(2) Dot switch Data Storage Leon Abelmann Constanta Summerschool, Sep 2005 Slide 39

  41. Conclusions 49,49(2) Conclusions • Imaging principle (deflection, phase, frequency) • Fourier transform for image formation • Side coated tips • Noise, bandwidth • Artefacts (interference, topography) • Tip/sample interaction Leon Abelmann Constanta Summerschool, Sep 2005 Slide 40

Recommend


More recommend