Maderβs Theorem on Edge-Disjoint -Paths Satoru Iwata (University of Tokyo) Joint work with Yu Yokoi (NII)
-Paths Graph A T -path # edge-disjoint -paths Not a T -path
-Paths Graph π π», π = 6 π π», π = 7 π π», π = 6 # edge-disjoint -paths
An Upper Bound -subpartition οΏ½ οΏ½βοΏ½ οΏ½ οΏ½ οΏ½ οΏ½ οΏ½βοΏ½ Theorem [LovΓ‘sz (1976), Cherkassky (1977)] οΏ½ π΄ οΏ½βοΏ½
An Upper Bound οΏ½ π π οΏ½ = 14 οΏ½ π π οΏ½ = 12 οΏ½ π π οΏ½ = 14 οΏ½βοΏ½ οΏ½βοΏ½ οΏ½βοΏ½ π π», π = 7 π π», π = 6 π π», π = 6
A Tighter Upper Bound -subpartition οΏ½ οΏ½βοΏ½ # odd degree components in οΏ½ οΏ½βοΏ½
Maderβs Theorem -subpartition οΏ½ οΏ½βοΏ½ # odd degree components in π π΄ = 12 οΏ½ οΏ½βοΏ½ Theorem [Mader 1978] π π», π = 6 οΏ½ π΄ οΏ½βοΏ½
Original Papers by Mader β’ W. Mader: Γber die Maximalzahl kantendisjunkter -Wege, Archiv. Math., 30 (1978), pp.325--336. edge-disjoint β’ W. Mader: Γber die Maximalzahl kreuzungsfreier -Wege, Archiv. Math., 31 (1978), pp.387--402. cross-free openly disjoint
Proofs from Books β’ R. Diestel: Graph Theory. --- Section for Maderβs theorems. --- No Proofs. β’ B. Korte & J. Vygen: Combinatorial Optimization: Theory and Algorithms --- No Mentions. β’ A. Frank: Connections in Combinatorial Optimization. --- Theorem of LovΓ‘sz and Cherkassky. β’ A. Schrijver: Combinatorial Optimization: Polyhedra and Efficiency --- A short proof on openly disjoint -paths. --- Reduction via line graphs.
Hierarchy of Frameworks Matroid Matching LovΓ‘sz (1980) Openly disjoint paths Mader (1978) Edge-disjoint -paths Vertex-disjoint -paths Mader (1978) Gallai (1961) Matching Inner Eulerian edge-disjoint -paths LovΓ‘sz (1976), Cherkassky (1977) Tutte (1947), Berge (1958)
Previous Works β’ LovΓ‘sz (1980): Reduction to matroid matching. β’ Karzanov (1993, 1997): Minimum cost edge-disjoint -paths. β’ Schrijver (2001): Short proof for openly disjoint -paths. β’ Schrijver (2003): Reduction to linear matroid parity. β’ Keijsper, Pendavingh, Stougie (2006): LP formulation of maximum edge-disjoint -paths. β’ Hirai and Pap (2014): Weighted maximization with tree metric.
Our Contribution β’ A constructive proof of Maderβs theorem on edge-disjoint -paths. β’ A combinatorial algorithm for finding maximum edge-disjoint -paths. Running time:
π€ Augmenting Walk π‘ π’ π€ π π‘ π‘ π‘ π‘ π’ π’ π’ π£ π‘ π’ π’ π€ π’ π π π π π’ π’ π π’ π‘ π£ π’ π π£
Augmenting Walk π‘ π‘ π’ π’ π‘ π’ π‘ π’ π π π π π‘ π’ π‘ π‘ π’ π’ π‘ π’ π π‘π’π π
Augmenting Walk π‘ π’ π‘ π’ π’ π‘ Auxiliary Labeled Graph π‘ π’ π‘ π‘ π’ π’ π’ π‘ π’ π‘ π‘ π’ π‘ π’ π‘ Augmenting walk: π’ π‘ π’ π‘ π’ - Between terminals π - No consecutive symbols π π π π’ π‘ π π‘ π π’ π‘ π’ π - Uses edge at most once, π π π π‘ π’ π π π π π π - Uses selfloop at most once, π π π π π π π - Uses edge at most twice, π π π π π at most once in each direction π π
Augmenting Walk π‘ π’ π‘ π’ π’ π‘ Auxiliary Labeled Graph π‘ π’ π‘ π‘ π’ π’ π’ π‘ π’ π‘ π‘ π’ π‘ π’ π‘ Augmenting walk: π’ π‘ π’ π‘ π’ - Between terminals π - No consecutive symbols π π π π’ π‘ π π‘ π π’ π‘ π’ π - Uses edge at most once, π π π π‘ π’ π π π π π π - Uses selfloop at most once, π π π π π π π - Uses edge at most twice, π π π π π at most once in each direction π π
Augmenting Walk π‘ π’ π‘ π’ π’ π‘ Auxiliary Labeled Graph π‘ π’ π‘ π‘ π’ π’ π’ π‘ π’ π‘ π‘ π’ π‘ π’ π‘ π‘ π’ π’ π‘ π’ π‘ π’ π π π π π’ π‘ π π‘ π π’ π‘ π’ π π π π π‘ π’ π π π π π π π π π π π π π π π π π π π π π π Symmetric Difference
Augmenting Walk π‘ π’ π‘ π’ π’ π‘ Auxiliary Labeled Graph π‘ π’ π‘ π‘ π’ π’ π’ π‘ π’ π‘ π’ π’ π‘ π‘ π’ π’ π π π π π π Symmetric Difference
Augmentation Edge-disjoint -paths Augmenting Walk in the Auxiliary Labeled Graph Edge-disjoint -paths
Augmentation π‘ π’ π‘ π’ π’ π‘ Auxiliary Labeled Graph π‘ π’ π‘ π‘ π’ π’ π’ π‘ π’ π‘ π‘ π‘ π’ π’ π π π π Symmetric Difference
Augmentation π‘ π’ π‘ π’ π’ π‘ Auxiliary Labeled Graph π‘ π’ π‘ π‘ π’ π’ π’ π‘ π’ π‘ π‘ π‘ π’ π’ π π π π Symmetric Difference Shortcut
Shortcut Operations β π’ π‘ π‘ π’ π’ β π’ π‘ π‘ π’ π’
Shortcut Operations β π’ β π‘ π‘ π’ β π’ β π‘ π‘ π’
Validity of Augmentation Edge-disjoint -paths Augmenting walk w/o shortcuts has edge-disjoint -paths. : Inner Eulerian Apply the theorem of LovΓ‘sz & Cherkassky
Validity of Augmentation π‘ π‘ π‘ οΏ½ οΏ½ οΏ½
Validity of Augmentation π‘ π‘ π‘
Validity of Augmentation π‘ π‘ π π π‘ π‘ π π π π π
Tightness Edge-disjoint -paths No Augmenting Walks in the Auxiliary Labeled Graph : -subpartition such that . οΏ½ οΏ½βοΏ½
Tightness Edge-disjoint -paths The last symbol in the admissible walk from to . οΏ½ οΏ½ π‘ π’ π π
Tightness No edge between and for A -path between and is disjoint from with At most one edge leaves a connected component of οΏ½ οΏ½βοΏ½ οΏ½ οΏ½βοΏ½
Summary β’ A constructive proof of Maderβs theorem on edge-disjoint -paths. β’ A combinatorial algorithm for finding maximum edge-disjoint -paths. S. Iwata and Y. Yokoi: A blossom algorithm for maximum edge-disjoint -paths, METR 2019-16. https://www.keisu.t.u-tokyo.ac.jp/research/techrep/y2019/
Future Directions β’ A combinatorial algorithm for minimum cost edge-disjoint -paths. β’ A combinatorial algorithm for the integer free multiflow problem. β’ A combinatorial algorithm for maximum openly disjoint -paths w/o reduction to matroid parity.
Recommend
More recommend