mader s theorem on edge disjoint paths
play

Maders Theorem on Edge-Disjoint -Paths Satoru Iwata (University of - PowerPoint PPT Presentation

Maders Theorem on Edge-Disjoint -Paths Satoru Iwata (University of Tokyo) Joint work with Yu Yokoi (NII) -Paths Graph A T -path # edge-disjoint -paths Not a T -path -Paths Graph , = 6 , = 7 , =


  1. Mader’s Theorem on Edge-Disjoint -Paths Satoru Iwata (University of Tokyo) Joint work with Yu Yokoi (NII)

  2. -Paths Graph A T -path # edge-disjoint -paths Not a T -path

  3. -Paths Graph 𝜈 𝐻, π‘ˆ = 6 𝜈 𝐻, π‘ˆ = 7 𝜈 𝐻, π‘ˆ = 6 # edge-disjoint -paths

  4. An Upper Bound -subpartition οΏ½ �∈� οΏ½ οΏ½ οΏ½ οΏ½ �∈� Theorem [LovΓ‘sz (1976), Cherkassky (1977)] οΏ½ 𝒴 �∈�

  5. An Upper Bound οΏ½ 𝑒 π‘Œ οΏ½ = 14 οΏ½ 𝑒 π‘Œ οΏ½ = 12 οΏ½ 𝑒 π‘Œ οΏ½ = 14 �∈� �∈� �∈� 𝜈 𝐻, π‘ˆ = 7 𝜈 𝐻, π‘ˆ = 6 𝜈 𝐻, π‘ˆ = 6

  6. A Tighter Upper Bound -subpartition � �∈� # odd degree components in � �∈�

  7. Mader’s Theorem -subpartition οΏ½ �∈� # odd degree components in πœ† 𝒴 = 12 οΏ½ �∈� Theorem [Mader 1978] 𝜈 𝐻, π‘ˆ = 6 οΏ½ 𝒴 �∈�

  8. Original Papers by Mader β€’ W. Mader: Über die Maximalzahl kantendisjunkter -Wege, Archiv. Math., 30 (1978), pp.325--336. edge-disjoint β€’ W. Mader: Über die Maximalzahl kreuzungsfreier -Wege, Archiv. Math., 31 (1978), pp.387--402. cross-free openly disjoint

  9. Proofs from Books β€’ R. Diestel: Graph Theory. --- Section for Mader’s theorems. --- No Proofs. β€’ B. Korte & J. Vygen: Combinatorial Optimization: Theory and Algorithms --- No Mentions. β€’ A. Frank: Connections in Combinatorial Optimization. --- Theorem of LovΓ‘sz and Cherkassky. β€’ A. Schrijver: Combinatorial Optimization: Polyhedra and Efficiency --- A short proof on openly disjoint -paths. --- Reduction via line graphs.

  10. Hierarchy of Frameworks Matroid Matching LovΓ‘sz (1980) Openly disjoint paths Mader (1978) Edge-disjoint -paths Vertex-disjoint -paths Mader (1978) Gallai (1961) Matching Inner Eulerian edge-disjoint -paths LovΓ‘sz (1976), Cherkassky (1977) Tutte (1947), Berge (1958)

  11. Previous Works β€’ LovΓ‘sz (1980): Reduction to matroid matching. β€’ Karzanov (1993, 1997): Minimum cost edge-disjoint -paths. β€’ Schrijver (2001): Short proof for openly disjoint -paths. β€’ Schrijver (2003): Reduction to linear matroid parity. β€’ Keijsper, Pendavingh, Stougie (2006): LP formulation of maximum edge-disjoint -paths. β€’ Hirai and Pap (2014): Weighted maximization with tree metric.

  12. Our Contribution β€’ A constructive proof of Mader’s theorem on edge-disjoint -paths. β€’ A combinatorial algorithm for finding maximum edge-disjoint -paths. Running time:

  13. 𝑀 Augmenting Walk 𝑑 𝑒 𝑀 𝑠 𝑑 𝑑 𝑑 𝑑 𝑒 𝑒 𝑒 𝑣 𝑑 𝑒 𝑒 𝑀 𝑒 𝑠 𝑠 𝑠 𝑠 𝑒 𝑒 𝑠 𝑒 𝑑 𝑣 𝑒 𝑠 𝑣

  14. Augmenting Walk 𝑑 𝑑 𝑒 𝑒 𝑑 𝑒 𝑑 𝑒 𝑠𝑠 𝑠 𝑠 𝑑 𝑒 𝑑 𝑑 𝑒 𝑒 𝑑 𝑒 𝑠𝑑𝑒𝑠 𝑠

  15. Augmenting Walk 𝑑 𝑒 𝑑 𝑒 𝑒 𝑑 Auxiliary Labeled Graph 𝑑 𝑒 𝑑 𝑑 𝑒 𝑒 𝑒 𝑑 𝑒 𝑑 𝑑 𝑒 𝑑 𝑒 𝑑 Augmenting walk: 𝑒 𝑑 𝑒 𝑑 𝑒 - Between terminals 𝑠 - No consecutive symbols 𝑠 π‘Ÿ π‘Ÿ 𝑒 𝑑 𝑠 𝑑 π‘Ÿ 𝑒 𝑑 𝑒 π‘Ÿ - Uses edge at most once, 𝑠 𝑠 π‘Ÿ 𝑑 𝑒 𝑠 π‘Ÿ π‘Ÿ π‘Ÿ 𝑠 𝑠 - Uses selfloop at most once, π‘Ÿ π‘Ÿ π‘Ÿ π‘Ÿ 𝑠 𝑠 𝑠 - Uses edge at most twice, 𝑠 𝑠 π‘Ÿ 𝑠 π‘Ÿ at most once in each direction π‘Ÿ 𝑠

  16. Augmenting Walk 𝑑 𝑒 𝑑 𝑒 𝑒 𝑑 Auxiliary Labeled Graph 𝑑 𝑒 𝑑 𝑑 𝑒 𝑒 𝑒 𝑑 𝑒 𝑑 𝑑 𝑒 𝑑 𝑒 𝑑 Augmenting walk: 𝑒 𝑑 𝑒 𝑑 𝑒 - Between terminals 𝑠 - No consecutive symbols 𝑠 π‘Ÿ π‘Ÿ 𝑒 𝑑 𝑠 𝑑 π‘Ÿ 𝑒 𝑑 𝑒 π‘Ÿ - Uses edge at most once, 𝑠 𝑠 π‘Ÿ 𝑑 𝑒 𝑠 π‘Ÿ π‘Ÿ π‘Ÿ 𝑠 𝑠 - Uses selfloop at most once, π‘Ÿ π‘Ÿ π‘Ÿ π‘Ÿ 𝑠 𝑠 𝑠 - Uses edge at most twice, 𝑠 𝑠 π‘Ÿ 𝑠 π‘Ÿ at most once in each direction 𝑠 π‘Ÿ

  17. Augmenting Walk 𝑑 𝑒 𝑑 𝑒 𝑒 𝑑 Auxiliary Labeled Graph 𝑑 𝑒 𝑑 𝑑 𝑒 𝑒 𝑒 𝑑 𝑒 𝑑 𝑑 𝑒 𝑑 𝑒 𝑑 𝑑 𝑒 𝑒 𝑑 𝑒 𝑑 𝑒 𝑠 𝑠 π‘Ÿ π‘Ÿ 𝑒 𝑑 𝑠 𝑑 π‘Ÿ 𝑒 𝑑 𝑒 π‘Ÿ 𝑠 𝑠 π‘Ÿ 𝑑 𝑒 𝑠 π‘Ÿ π‘Ÿ π‘Ÿ 𝑠 𝑠 π‘Ÿ π‘Ÿ π‘Ÿ π‘Ÿ 𝑠 𝑠 𝑠 𝑠 𝑠 𝑠 π‘Ÿ π‘Ÿ 𝑠 π‘Ÿ 𝑠 π‘Ÿ Symmetric Difference

  18. Augmenting Walk 𝑑 𝑒 𝑑 𝑒 𝑒 𝑑 Auxiliary Labeled Graph 𝑑 𝑒 𝑑 𝑑 𝑒 𝑒 𝑒 𝑑 𝑒 𝑑 𝑒 𝑒 𝑑 𝑑 𝑒 𝑒 π‘Ÿ π‘Ÿ 𝑠 𝑠 𝑠 π‘Ÿ Symmetric Difference

  19. Augmentation Edge-disjoint -paths Augmenting Walk in the Auxiliary Labeled Graph Edge-disjoint -paths

  20. Augmentation 𝑑 𝑒 𝑑 𝑒 𝑒 𝑑 Auxiliary Labeled Graph 𝑑 𝑒 𝑑 𝑑 𝑒 𝑒 𝑒 𝑑 𝑒 𝑑 𝑑 𝑑 𝑒 𝑒 π‘Ÿ π‘Ÿ 𝑠 𝑠 Symmetric Difference

  21. Augmentation 𝑑 𝑒 𝑑 𝑒 𝑒 𝑑 Auxiliary Labeled Graph 𝑑 𝑒 𝑑 𝑑 𝑒 𝑒 𝑒 𝑑 𝑒 𝑑 𝑑 𝑑 𝑒 𝑒 π‘Ÿ π‘Ÿ 𝑠 𝑠 Symmetric Difference Shortcut

  22. Shortcut Operations β‰  𝑒 𝑑 𝑑 𝑒 𝑒 β‰  𝑒 𝑑 𝑑 𝑒 𝑒

  23. Shortcut Operations β‰  𝑒 β‰  𝑑 𝑑 𝑒 β‰  𝑒 β‰  𝑑 𝑑 𝑒

  24. Validity of Augmentation Edge-disjoint -paths Augmenting walk w/o shortcuts has edge-disjoint -paths. : Inner Eulerian Apply the theorem of LovΓ‘sz & Cherkassky

  25. Validity of Augmentation 𝑑 𝑑 𝑑 οΏ½ οΏ½ οΏ½

  26. Validity of Augmentation 𝑑 𝑑 𝑑

  27. Validity of Augmentation 𝑑 𝑑 𝑠 𝑠 𝑑 𝑑 𝑠 𝑠 𝑠 𝑠 𝑠

  28. Tightness Edge-disjoint -paths No Augmenting Walks in the Auxiliary Labeled Graph : -subpartition such that . � �∈�

  29. Tightness Edge-disjoint -paths The last symbol in the admissible walk from to . οΏ½ οΏ½ 𝑑 𝑒 𝑠 π‘Ÿ

  30. Tightness No edge between and for A -path between and is disjoint from with At most one edge leaves a connected component of � �∈� � �∈�

  31. Summary β€’ A constructive proof of Mader’s theorem on edge-disjoint -paths. β€’ A combinatorial algorithm for finding maximum edge-disjoint -paths. S. Iwata and Y. Yokoi: A blossom algorithm for maximum edge-disjoint -paths, METR 2019-16. https://www.keisu.t.u-tokyo.ac.jp/research/techrep/y2019/

  32. Future Directions β€’ A combinatorial algorithm for minimum cost edge-disjoint -paths. β€’ A combinatorial algorithm for the integer free multiflow problem. β€’ A combinatorial algorithm for maximum openly disjoint -paths w/o reduction to matroid parity.

Recommend


More recommend