lyapunov like functions and lie brackets
play

Lyapunov-like functions and Lie brackets Franco Rampazzo Monica - PowerPoint PPT Presentation

Lyapunov-like functions and Lie brackets Franco Rampazzo Monica Motta 11th Meeting on Nonlinear Hyperbolic PDEs and Applications On the occasion of the 60th birthday of Alberto Bressan Trieste, June 2016 Lyapunov-like functions and Lie


  1. Brockett’s nonholonomic integrator: TRY the ( smooth!) distance function V ( x ) = d ( x , 0) as Lyapunov function: Level sets of V(x)=d(x,0) f 2 (=Spheres) f 1 f 2 f 1 Does the distance V ( x ) = d ( x , 0) verify � � < 0 ? H ( x , DV ( x )) = inf DV ( x ) , u 1 f 1 ( x ) + u 2 f 2 ( x ) u No, it doesn’t! Lyapunov-like functions and Lie brackets Franco RampazzoMonica Motta

  2. Brockett’s nonholonomic integrator: TRY the ( smooth!) distance function V ( x ) = d ( x , 0) as Lyapunov function: Level sets of V(x)=d(x,0) f 2 (=Spheres) f 1 f 2 f 1 Does the distance V ( x ) = d ( x , 0) verify � � < 0 ? H ( x , DV ( x )) = inf DV ( x ) , u 1 f 1 ( x ) + u 2 f 2 ( x ) u No, it doesn’t! In fact, on the vertical axis one has � � H ( x , DV ( x )) = inf DV ( x ) , u 1 f 1 ( x ) + u 2 f 2 ( x ) =0 u Lyapunov-like functions and Lie brackets Franco RampazzoMonica Motta

  3. Brockett’s nonholonomic integrator: So the distance V ( x ) = d ( x , 0) is not a Lyapunov function Lyapunov-like functions and Lie brackets Franco RampazzoMonica Motta

  4. Brockett’s nonholonomic integrator: So the distance V ( x ) = d ( x , 0) is not a Lyapunov function because the system dynamics is in the kernel of DV ( x ) . Lyapunov-like functions and Lie brackets Franco RampazzoMonica Motta

  5. Brockett’s nonholonomic integrator: So the distance V ( x ) = d ( x , 0) is not a Lyapunov function because the system dynamics is in the kernel of DV ( x ) . Maybe another smooth function would work? Lyapunov-like functions and Lie brackets Franco RampazzoMonica Motta

  6. Brockett’s nonholonomic integrator: So the distance V ( x ) = d ( x , 0) is not a Lyapunov function because the system dynamics is in the kernel of DV ( x ) . Maybe another smooth function would work? NO! Lyapunov-like functions and Lie brackets Franco RampazzoMonica Motta

  7. Brockett’s nonholonomic integrator: So the distance V ( x ) = d ( x , 0) is not a Lyapunov function because the system dynamics is in the kernel of DV ( x ) . Maybe another smooth function would work? NO! Actually, by algebraic topological arguments (essentially the hairy ball theorem ) one can prove that No (smooth) Lyapunov functions exist Lyapunov-like functions and Lie brackets Franco RampazzoMonica Motta

  8. ”What to do?” Lyapunov-like functions and Lie brackets Franco RampazzoMonica Motta

  9. ”What to do?” Nonsmooth Answer: Lyapunov-like functions and Lie brackets Franco RampazzoMonica Motta

  10. ”What to do?” Nonsmooth Answer: ”Avoid bad points where H ( x , DV ) = 0 by allowing ... Lyapunov functions which are nonsmooth at those bad points” Lyapunov-like functions and Lie brackets Franco RampazzoMonica Motta

  11. ”What to do?” Nonsmooth Answer: ”Avoid bad points where H ( x , DV ) = 0 by allowing ... Lyapunov functions which are nonsmooth at those bad points” (this rules out the distance function in the example) Lyapunov-like functions and Lie brackets Franco RampazzoMonica Motta

  12. Formal definition of nonsmooth Lyapunov Function: (replace DV with D ∗ V ) Lyapunov-like functions and Lie brackets Franco RampazzoMonica Motta

  13. Formal definition of nonsmooth Lyapunov Function: (replace DV with D ∗ V ) A map V : R n → R + is a Control Lyapunov Function ( CLF ), if V is continuous, locally semiconcave, proper; V ( x ) > 0 if x / ∈ C and V ( x ) = 0 if x ∈ C ; It verifies the partial differential inequality : H ( x , D ∗ V ( x )) = min u ∈ U � D ∗ V ( x ) , f ( x , u ) � < 0 Lyapunov-like functions and Lie brackets Franco RampazzoMonica Motta

  14. Formal definition of nonsmooth Lyapunov Function: (replace DV with D ∗ V ) A map V : R n → R + is a Control Lyapunov Function ( CLF ), if V is continuous, locally semiconcave, proper; V ( x ) > 0 if x / ∈ C and V ( x ) = 0 if x ∈ C ; It verifies the partial differential inequality : H ( x , D ∗ V ( x )) = min u ∈ U � D ∗ V ( x ) , f ( x , u ) � < 0 Here D ∗ V ( x ) denotes the set of limiting gradients of V at x : D ∗ V ( x ) . � � = w : w = lim k DV ( x k ) , lim k z k = z . Remark: In general D ∗ V ( x ) is not convex. Lyapunov-like functions and Lie brackets Franco RampazzoMonica Motta

  15. H ( x , D ∗ V ( x )) = min u ∈ U � D ∗ V ( x ) , f ( x , u ) � < 0 Lyapunov-like functions and Lie brackets Franco RampazzoMonica Motta

  16. H ( x , D ∗ V ( x )) = min u ∈ U � D ∗ V ( x ) , f ( x , u ) � < 0 a non-homogeneous special case: H ℓ ( x , D ∗ V ( x )) = min u ∈ U ( � D ∗ V ( x ) , f ( x , u ) � + p 0 ℓ ( x , u )) < 0 for some p 0 ≥ 0, where ℓ ( x , u ) ≥ 0 is a current cost . V is called p 0 -Minimum Restraint Function : if p 0 > 0 its existence guarantees (Motta-Rampazzo 2013): Global Asymptotic Controllability, � T x A bound on the value function W = inf ℓ ( x ( t ) , u ( t )) dx 0 W ≤ V / p 0 . Lyapunov-like functions and Lie brackets Franco RampazzoMonica Motta

  17. H ( x , D ∗ V ( x )) = min u ∈ U � D ∗ V ( x ) , f ( x , u ) � < 0 a non-homogeneous special case: H ℓ ( x , D ∗ V ( x )) = min u ∈ U ( � D ∗ V ( x ) , f ( x , u ) � + p 0 ℓ ( x , u )) < 0 for some p 0 ≥ 0, where ℓ ( x , u ) ≥ 0 is a current cost . V is called p 0 -Minimum Restraint Function : if p 0 > 0 its existence guarantees (Motta-Rampazzo 2013): Global Asymptotic Controllability, � T x A bound on the value function W = inf ℓ ( x ( t ) , u ( t )) dx 0 W ≤ V / p 0 . I am NOT speaking of this special case today Lyapunov-like functions and Lie brackets Franco RampazzoMonica Motta

  18. In the case of Brockett’s nonholonomic integrator �� � � x 2 1 + x 2 x 2 1 + x 2 one can try V = max 2 , | x 3 | − , 2 which has singularities on the vertical axis : V(x)= cost. f 2 f 1 Lyapunov-like functions and Lie brackets Franco RampazzoMonica Motta

  19. In the case of Brockett’s nonholonomic integrator �� � � x 2 1 + x 2 x 2 1 + x 2 one can try: V = max 2 , | x 3 | − , 2 which has singularities on the vertical axis H = 0 avoided! D*V V(x)= cost. Notice: NO VERTICAL f 2 GRADIENTS f 1 Lyapunov-like functions and Lie brackets Franco RampazzoMonica Motta

  20. Why nonsmooth Lyapunov control functions are important? Lyapunov-like functions and Lie brackets Franco RampazzoMonica Motta

  21. Why nonsmooth Lyapunov control functions are important? Because they are useful, namely we can extend the smooth Lyapunov-like theorem: Lyapunov-like functions and Lie brackets Franco RampazzoMonica Motta

  22. Why nonsmooth Lyapunov control functions are important? Because they are useful, namely we can extend the smooth Lyapunov-like theorem: Nonsmooth Lyapunov-like Theorem: If there exists a Control Lyapunov Function then the system is Globally Asymptotically Controllable Lyapunov-like functions and Lie brackets Franco RampazzoMonica Motta

  23. Why nonsmooth Lyapunov control functions are important? Because they are useful, namely we can extend the smooth Lyapunov-like theorem: Nonsmooth Lyapunov-like Theorem: If there exists a Control Lyapunov Function then the system is Globally Asymptotically Controllable Many important results since the 80’s, with various notions of nonsmooth gradients and/or generalized notions of ODE solutions. Quite incomplete list of authors includes : Sontag, Artstein,Bacciotti,Clarke, Subbotin,Malisoff, Rifford Lyapunov-like functions and Lie brackets Franco RampazzoMonica Motta

  24. What if we insist with smooth functions ? Lyapunov-like functions and Lie brackets Franco RampazzoMonica Motta

  25. What if we insist with smooth functions ? For instance, some function V such that it is useful as a Lyapunov function (i.e., a Lyapunov-likeTheorem holds true) it has more chances to be smooth ??? Lyapunov-like functions and Lie brackets Franco RampazzoMonica Motta

  26. IDEA: USE NON-COMMUTATIVITY Lyapunov-like functions and Lie brackets Franco RampazzoMonica Motta

  27. A movie on non-commutativity, in R 3 : the ”Nonholonomic integrator” Lyapunov-like functions and Lie brackets Franco RampazzoMonica Motta

  28. A movie on non-commutativity, in R 3 : the ”Nonholonomic integrator”     1 0 f 1 = 0 f 2 = 1     − x 2 x x = u 1 f 1 + u 2 f 2 ˙ Lyapunov-like functions and Lie brackets Franco RampazzoMonica Motta

  29. A movie of non-commutativity, in R 3 : the ”Nonholonomic integrator” f 2 f 1 Lyapunov-like functions and Lie brackets Franco RampazzoMonica Motta

  30. A movie of non-commutativity, in R 3 : the ”Nonholonomic integrator” f 2 f 1 Φ t f 1 ( x ) Lyapunov-like functions and Lie brackets Franco RampazzoMonica Motta

  31. A movie of non-commutativity, in R 3 : the ”Nonholonomic integrator” f 2 f 1 Φ t f 2 ◦ Φ t f 1 ( x ) Lyapunov-like functions and Lie brackets Franco RampazzoMonica Motta

  32. A movie of non-commutativity, in R 3 : the ”Nonholonomic integrator” -f 1 f 1 f 2 Φ − t f 1 ◦ Φ t f 2 ◦ Φ t f 1 ( x ) Lyapunov-like functions and Lie brackets Franco RampazzoMonica Motta

  33. A movie of non-commutativity, in R 3 : the ”Nonholonomic integrator” -f 2 -f 1 f 1 f 2 Φ − t f 2 ◦ Φ − t f 1 ◦ Φ t f 2 ◦ Φ t f 1 ( x ) � = x Lyapunov-like functions and Lie brackets Franco RampazzoMonica Motta

  34. Lie brackets Definition Lie bracket of C 1 vector fields f , g : [ f , g ] := Dg · f − Df · g Lyapunov-like functions and Lie brackets Franco RampazzoMonica Motta

  35. Lie brackets Definition Lie bracket of C 1 vector fields f , g : [ f , g ] := Dg · f − Df · g Basic properties: [ f , g ] is a vector field (i.e. it is an intrinsic object) 1 [ f , g ] = − [ g , f ] (antisymmetry) ( = ⇒ [ f , f ] = 0) 2 [ f , [ g , h ]] + [ g , [ h , f ]] + [ h , [ f , g ]] = 0 (Jacobi identy) 3 Lyapunov-like functions and Lie brackets Franco RampazzoMonica Motta

  36. Remind: The asymptotics of a Lie bracket: Lyapunov-like functions and Lie brackets Franco RampazzoMonica Motta

  37. Remind: The asymptotics of a Lie bracket: Set Ψ [ f 1 , f 2 ] ( t )( x ) := Φ − t f 2 ◦ Φ − t f 1 ◦ Φ t f 2 ◦ Φ t f 1 ( x ) Lyapunov-like functions and Lie brackets Franco RampazzoMonica Motta

  38. Remind: The asymptotics of a Lie bracket: Set Ψ [ f 1 , f 2 ] ( t )( x ) := Φ − t f 2 ◦ Φ − t f 1 ◦ Φ t f 2 ◦ Φ t f 1 ( x ) Asymptotic formula: Ψ [ f 1 , f 2 ] ( t )( x ) − x = t 2 [ f 1 , f 2 ]( x ) + o ( t 2 ) Lyapunov-like functions and Lie brackets Franco RampazzoMonica Motta

  39. Remind: The asymptotics of a Lie bracket: Set Ψ [ f 1 , f 2 ] ( t )( x ) := Φ − t f 2 ◦ Φ − t f 1 ◦ Φ t f 2 ◦ Φ t f 1 ( x ) Asymptotic formula: Ψ [ f 1 , f 2 ] ( t )( x ) − x = t 2 [ f 1 , f 2 ]( x ) + o ( t 2 ) Lyapunov-like functions and Lie brackets Franco RampazzoMonica Motta

  40. Sophus Lie Figure: Continuous (Lie!) groups, geometry, ODEs Lyapunov-like functions and Lie brackets Franco RampazzoMonica Motta

  41. Observe: Lie brackets show up in higher order necessary conditions for minima controllability boundary conditions of HJ equations, to guarantee continuity of time optimal functions BUT Lyapunov-like functions and Lie brackets Franco RampazzoMonica Motta

  42. Observe: Lie brackets show up in higher order necessary conditions for minima controllability boundary conditions of HJ equations, to guarantee continuity of time optimal functions BUT they are not included in HJ equations or HJ inequalities Lyapunov-like functions and Lie brackets Franco RampazzoMonica Motta

  43. A new PDI ( defining a Lyapunov’like function ) Lyapunov-like functions and Lie brackets Franco RampazzoMonica Motta

  44. A new PDI ( defining a Lyapunov’like function ) For simplicity we limit our attention to control-linear systems: m � x = ˙ u i g i ( x ) u = ± e 1 , . . . , ± e m i =1 Lyapunov-like functions and Lie brackets Franco RampazzoMonica Motta

  45. A new PDI ( defining a Lyapunov’like function ) For simplicity we limit our attention to control-linear systems: m � x = ˙ u i g i ( x ) u = ± e 1 , . . . , ± e m i =1 Set F (1) := � � ± f 1 , . . . , ± f m Lyapunov-like functions and Lie brackets Franco RampazzoMonica Motta

  46. A new PDI ( defining a Lyapunov’like function ) For simplicity we limit our attention to control-linear systems: m � x = ˙ u i g i ( x ) u = ± e 1 , . . . , ± e m i =1 Set F (1) := � � F (2) := F (1) ∪ � � ± f 1 , . . . , ± f m [ f i , f j ] i , j = 1 , . . . , m . . . Lyapunov-like functions and Lie brackets Franco RampazzoMonica Motta

  47. A new PDI ( defining a Lyapunov’like function ) For simplicity we limit our attention to control-linear systems: m � x = ˙ u i g i ( x ) u = ± e 1 , . . . , ± e m i =1 Set F (1) := � � F (2) := F (1) ∪ � � ± f 1 , . . . , ± f m [ f i , f j ] i , j = 1 , . . . , m . . . F ( j ) := F ( j − 1) ∪ { Lie brackets of degree j } Lyapunov-like functions and Lie brackets Franco RampazzoMonica Motta

  48. A new PDI ( defining a Lyapunov’like function ) For simplicity we limit our attention to control-linear systems: m � x = ˙ u i g i ( x ) u = ± e 1 , . . . , ± e m i =1 Set F (1) := � � F (2) := F (1) ∪ � � ± f 1 , . . . , ± f m [ f i , f j ] i , j = 1 , . . . , m . . . F ( j ) := F ( j − 1) ∪ { Lie brackets of degree j } H ( j ) ( x , p ) := v ∈ F ( j ) ( x ) � p , v � inf Lyapunov-like functions and Lie brackets Franco RampazzoMonica Motta

  49. A new PDI ( defining a Lyapunov’like function ) For simplicity we limit our attention to control-linear systems: m � x = ˙ u i g i ( x ) u = ± e 1 , . . . , ± e m i =1 Set F (1) := � � F (2) := F (1) ∪ � � ± f 1 , . . . , ± f m [ f i , f j ] i , j = 1 , . . . , m . . . F ( j ) := F ( j − 1) ∪ { Lie brackets of degree j } H ( j ) ( x , p ) := v ∈ F ( j ) ( x ) � p , v � inf Notice that H (1) = H and Lyapunov-like functions and Lie brackets Franco RampazzoMonica Motta

  50. A new PDI ( defining a Lyapunov’like function ) For simplicity we limit our attention to control-linear systems: m � x = ˙ u i g i ( x ) u = ± e 1 , . . . , ± e m i =1 Set F (1) := � � F (2) := F (1) ∪ � � ± f 1 , . . . , ± f m [ f i , f j ] i , j = 1 , . . . , m . . . F ( j ) := F ( j − 1) ∪ { Lie brackets of degree j } H ( j ) ( x , p ) := v ∈ F ( j ) ( x ) � p , v � inf Notice that H (1) = H and H = H (1) ≥ H (2) ≥ . . . H ( k − 1) ≥ H ( k ) Lyapunov-like functions and Lie brackets Franco RampazzoMonica Motta

  51. A new PDI ( defining a Lyapunov’like function ) Lyapunov-like functions and Lie brackets Franco RampazzoMonica Motta

  52. A new PDI ( defining a Lyapunov’like function ) Definition Let U : R n \ C → R be continuous function, locally semiconcave, positive definite, and proper. If H ( h ) ( x , D ∗ U ( x )) < 0 we say that U is a degree-h Control Lyapunov Function Lyapunov-like functions and Lie brackets Franco RampazzoMonica Motta

  53. A new PDI ( defining a Lyapunov’like function ) Definition Let U : R n \ C → R be continuous function, locally semiconcave, positive definite, and proper. If H ( h ) ( x , D ∗ U ( x )) < 0 we say that U is a degree-h Control Lyapunov Function Remark: if h 1 ≤ h 2 , U is a degree- h 1 CLF = ⇒ U is a degree- h 2 CLF Lyapunov-like functions and Lie brackets Franco RampazzoMonica Motta

  54. A new PDI ( defining a Lyapunov’like function ) Definition Let U : R n \ C → R be continuous function, locally semiconcave, positive definite, and proper. If H ( h ) ( x , D ∗ U ( x )) < 0 we say that U is a degree-h Control Lyapunov Function Remark: if h 1 ≤ h 2 , U is a degree- h 1 CLF = ⇒ U is a degree- h 2 CLF Indeed: H = H (1) ≥ H (2) ≥ . . . H ( k − 1) ≥ H ( k ) Lyapunov-like functions and Lie brackets Franco RampazzoMonica Motta

  55. Why degree-h control Lyapunov functions are useful? ( h ≥ 1 ) Lyapunov-like functions and Lie brackets Franco RampazzoMonica Motta

  56. Why degree-h control Lyapunov functions are useful? ( h ≥ 1 ) Because a ”Lyapunov-like” theorem holds true! Lyapunov-like functions and Lie brackets Franco RampazzoMonica Motta

  57. Why degree-h control Lyapunov functions are useful? ( h ≥ 1 ) Because a ”Lyapunov-like” theorem holds true! degree-h Lyapunov-like Theorem: If there exists a degree- h Control Lyapunov Function then the system is Globally Asymptotically Controllable Lyapunov-like functions and Lie brackets Franco RampazzoMonica Motta

  58. Why degree-h control Lyapunov functions are useful? ( h ≥ 1 ) Because a ”Lyapunov-like” theorem holds true! degree-h Lyapunov-like Theorem: If there exists a degree- h Control Lyapunov Function then the system is Globally Asymptotically Controllable Moreover, degree-h Control Lyapunov Functions are likely smoother than stan- dard CLFs Lyapunov-like functions and Lie brackets Franco RampazzoMonica Motta

  59. Application to the nonholonomic integrator Lyapunov-like functions and Lie brackets Franco RampazzoMonica Motta

  60. Application to the nonholonomic integrator x = u 1 f 1 + u 2 f 2 ˙ Lyapunov-like functions and Lie brackets Franco RampazzoMonica Motta

  61. Application to the nonholonomic integrator x = u 1 f 1 + u 2 f 2 ˙       1 0 0  ,  , f 1 = 0 f 2 = 1 [ f 1 , f 2 ] = 0     − x 2 x 1 2 Lyapunov-like functions and Lie brackets Franco RampazzoMonica Motta

  62. Application to the nonholonomic integrator x = u 1 f 1 + u 2 f 2 ˙       1 0 0  ,  , f 1 = 0 f 2 = 1 [ f 1 , f 2 ] = 0     − x 2 x 1 2 Trivial calculations give: ( p 1 − x 2 p 3 ) 2 + ( p 2 + x 2 p 3 ) 2 H 1 ( x , p ) = H ( x , p ) = − � � � ( p 1 − x 2 p 3 ) 2 + ( p 2 + x 2 p 3 ) 2 , − | p 3 | H 2 ( x , p ) = min � − 16 Lyapunov-like functions and Lie brackets Franco RampazzoMonica Motta

Recommend


More recommend