lozenge tilings with gaps in a 90 wedge domain with mixed
play

LOZENGE TILINGS WITH GAPS IN A 90 WEDGE DOMAIN WITH MIXED BOUNDARY - PowerPoint PPT Presentation

LOZENGE TILINGS WITH GAPS IN A 90 WEDGE DOMAIN WITH MIXED BOUNDARY CONDITIONS Mihai Ciucu Department of Mathematics, Indiana University, Bloomington, Indiana 47405 Research supported in part by NSF grant DMS-1101670. Correlation in a sea of


  1. LOZENGE TILINGS WITH GAPS IN A 90 ◦ WEDGE DOMAIN WITH MIXED BOUNDARY CONDITIONS Mihai Ciucu Department of Mathematics, Indiana University, Bloomington, Indiana 47405 Research supported in part by NSF grant DMS-1101670.

  2. Correlation in a sea of dimers

  3. [C, ’05–’10] In bulk, for large separations, this is asymptotically 2D electrostatics

  4. What about the interaction with boundary? Two natural types: free boundary constrained boundary

  5. Previous examples

  6. “straight line” constrained boundary

  7. straight line free boundary

  8. 60 ◦ angle, constrained boundary

  9. 120 ◦ angle, constrained boundary

  10. Current talk: 90 ◦ angle, mixed boundary

  11. � x x O � y+ 1 y+ 1 n n D n,x,y : n = 6 , x = 5 , y = 4 D n,x,y ( α , β ): n = 6 , x = 5 , y = 4 , α = 2 , β = 4

  12. • M f ( D ): # tilings of D with tiles allowed to protrude across free boundary portions • : ω c ( α , β ) (correlation of the gap with the corner): M f ( D n,n, 0 ( α , β )) ω c ( α , β ) := lim M f ( D n,n, 0 (1 , 1)) n →∞

  13. D 10 , 10 , 0 (3 , 4). D 10 , 10 , 0 (1 , 1).

  14. O 3 O 1 O O 2 4 The gap and its three images for α = 3, β = 4

  15. The main result of this talk: Theorem. Let q be a fixed positive rational number. As α and β approach infinity so that α = q β , we have � 16 ∼ 32 d( O 1 , O 2 ) d( O 3 , O 4 ) ω c ( α , β ) ∼ d( O 1 , O 3 ) d( O 1 , O 4 ) d( O 2 , O 3 ) d( O 2 , O 4 ) , � π q 2 + 1 3 π Rq 3 where d is the Euclidean distance.

  16. x y+ 1 i i i 2 i k k 1 1 n D i 1 ,...,i k for n = 6, x = 5, y = 4, k = 4, i 1 = 1, i 2 = 3, i 3 = 5, i 4 = 6. n,x,y It turns out we can reduce to enumerating tilings of such regions.

  17. Great strike of luck: They are given by “round” formulas!

  18. Proposition. For any integers n, x ≥ 0 and y ≥ − 1 , and for any integers 1 ≤ i 1 < · · · < i k ≤ n , we have k � x + y + n + i a � i b − i a � � M f ( D i 1 ,...,i k ) = . n,x,y y + 2 i a y + i b + i a a =1 1 ≤ a<b ≤ k

  19. x x y+ 1 y+ 1 i i i 2 i i i i 2 i k k 1 1 k k 1 1 n n Tilings and paths Starting and ending segments The tilings are in bijection with non-intersecting families of paths of rhombi: • starting points: fixed • ending points: can vary among a specified set

  20. x y+ 1 i i i 2 i k k 1 1 n Regarding the paths of lozenges as lattice paths in Z 2

  21. A result of Stembridge expresses this as a Pfa ffi an. After using some combinatorial identities, this Pfa ffi an can be evaluated explicitly using Schur’s Pfa ffi an Identity: Theorem (Schur’s Pfaffian Identity). Let n be even, and let x 1 , . . . , x n be indeterminates. Then we have � n � x j − x i x j − x i � Pf = . x j + x i x j + x i i,j =1 1 ≤ i<j ≤ n

  22. Generalization of SSC plane partitions, even by even by even case.

  23. Generalization of SSC plane partitions, even by odd by odd case.

  24. Corollary (Generalization of SSC plane partitions). Let n, x ≥ 0 and 1 ≤ k 1 < · · · < k s ≤ n be integers. If k 1 > 1 set t = 0 , otherwise define t by requiring k i − i = 0 , i = 1 , . . . , t , and k t +1 − ( t + 1) > 0 . Let { 1 , . . . , n } \ { k 1 , . . . , k s } = { i 1 , . . . , i n − s } . Then we have: (a) . M − , | ( H 2 n, 2 n, 2 x ( k 1 , . . . , k s )) = M f ( D i 1 ,...,i n − s n,x, 2 t − 1 ) n − s � x + 2 t + n + i a − 1 � i b − i a � � = 2 t + i a + i b − 1 . 2 t + 2 i a − 1 a =1 1 ≤ a<b ≤ n − s (b) . M − , | ( H 2 n +1 , 2 n +1 , 2 x ( k 1 , . . . , k s )) = M f ( D i 1 ,...,i n − s ) n,x, 2 t n − s � x + 2 t + n + i a � i b − i a � � = . 2 t + 2 i a 2 t + i a + i b a =1 1 ≤ a<b ≤ n − s

  25. A limit formula for regions with two dents Proposition. For any fixed integers 1 ≤ i < j , we have � � D [ n ] \{ i,j } M f � = 4 j − i 1 � 2 i − 1 � 1 � 2 j − 1 � n,n, 0 lim . 2 2 i − 2 2 2 j − 2 � j + i i − 1 j − 1 D [ n ] \{ 1 , 2 } n →∞ M f n,n, 0

  26. To finish the proof: • a double sum formula • its asymptotic analysis

  27. v 3 R 2 R ( v R ) 2 3 Changing from ( α , β ) to ( R, v )-coordinates.

  28. A double sum formula Lemma. Write α = 2 v − R , β = R , with R and v non-negative integers. Then we have ω c ( α , β ) = ω c (2 v − R, R ) � R R ( − 1) a + b ( R + a − 1)! ( R + b − 1)! � � � = 4 R � (2 a )! ( R − a )! (2 b )! ( R − b )! � � a =0 b =0 (2 v ′ + 2 a + 1)! (2 v ′ + 2 b + 1)! ( b − a ) 2 � � � , × 2 2(2 v ′ + a + b ) ( v ′ + a )! ( v ′ + a + 1)! ( v ′ + b )! ( v ′ + b + 1)! 2 v ′ + a + b + 2 � where v ′ = 2 v − R − 1 .

  29. D 6 , 6 , 0 (3 , 3; { 1 , 2 , 6 , 8 } ) Paths of lozenges

  30. 8 8 6 6 2 2 1211 1 1 6 5 4 3 2 1 6 4 2 1 D 1 , 2 , 4 , 6 Labeling starting and ending points 6 , 6 , 0 ( { 1 , 2 , 6 , 8 } )

  31. Outline of proof of double sum formula • Free boundary is sum over constrained boundaries: � M f ( D n,n, 0 ( α , β )) = M( D n,n, 0 ( α , β ; S )) S ⊂ T | S | = n − 2 • Use Pfa ffi an formula for lattice paths and Laplace expansion to get M( D n,n, 0 ( α , β ; S )) = � � � � ( − 1) a + b ( b − a )( R + a − 1)! ( R + b − 1)! M( D [ n ] \{ 2 v − R + a, 2 v − R + b } � � � ( S )) � n,n, 0 � (2 a )! ( R − a )! (2 b )! ( R − b )! � � 0 ≤ a<b ≤ R � �

  32. • Sum over boundaries to get M f ( D n,n, 0 ( α , β )) = � � � � ( − 1) a + b ( b − a )( R + a − 1)! ( R + b − 1)! M f ( D [ n ] \{ 2 v − R + a, 2 v − R + b } � � � 2 R ) � � n,n, 0 (2 a )! ( R − a )! (2 b )! ( R − b )! � � 0 ≤ a<b ≤ R � � • divide by M f ( D n,n, 0 (1 , 1)), let n → ∞ , and use 2-dent limit formula

  33. Reduction of the double sum to simple sums • The double sum separates if we write � 1 1 x 2 v ′ + a + b +1 dx 2 v ′ + a + b + 2 = 0 • Moment sums ( k ∈ Z , x ∈ [0 , 1]): R T ( k ) ( R, v ; x ) := 1 ( − R ) a ( R ) a (3 / 2) v + a � x � a � a k R (1) a (1 / 2) a (2) v + a 4 a =0

  34. Lemma. We have that ω c (2 v − R, R ) = � 1 � 1 � � � 2 � T (2) ( R, v ′ ; x ) T (0) ( R, v ′ ; x ) x 2 v ′ +1 dx − x 2 v ′ +1 dx � T (1) ( R, v ′ ; x ) � 8 R � , � � � 0 0 where v ′ = 2 v − R − 1 .

  35. The asymptotics of the integrals in the lemma It follows from results in [C, Mem. AMS, 2005] that: � 1 T (2) ( R, v ′ ; x ) T (0) ( R, v ′ ; x ) x 2 v ′ +1 dx 0 � 1 � 2 1 � 1 − x − arctan 1 x � � � x 2 qR cos 2 R arccos 4 − x + π dx ∼ π R � 2 q q 2 + x (4 − x ) 0 4 − x and � 1 � 2 � T (1) ( R, v ′ ; x ) dx ∼ 0 � 1 � � � �� 2 1 1 − x − arctan 1 x � � x 2 qR 1 + cos 2 R arccos 4 − x + π dx π R � 2 q q 2 + x (4 − x ) 0 4 − x

  36. Lemma then implies � � � 1 � � ω c (2 v − R, R ) ∼ 16 1 x 2 qR � � dx � � π � q 2 + x � (4 − x ) � 0 4 − x � � as R and v approach infinity so that 2 v − R = qR .

  37. We have � 1 1 1 1 x 2 qR dx ∼ R, R → ∞ � � q 2 + q 2 + 1 x (4 − x ) 0 3 q 4 − x 3 Then we get 16 1 ω c (2 v − R, R ) ∼ R, � q 2 + 1 3 π q 3 which proves the Theorem.

  38. A general conjecture for regions Ω n on the triangular lattice

  39. The two types of zig-zag corners in Ω n

  40. An example of Ω n

  41. � 2 +1 +1 +1 The corresponding steady state heat flow problem

  42. • O ( n ) , . . . , O ( n ) k : finite unions of unit triangles from the interior of Ω n (the gaps) 1 • for fixed i , O ( n ) ’s are translates of one another for all n ≥ 1 i • O ( n ) shrinks to point a i ∈ Ω in scaling limit, i = 1 , . . . , k i • Ω n → Ω , n → ∞ • E : heat energy when sources/sinks are at positions a 1 , . . . , a k ( n ) ’s be translations of the O ( n ) Conjecture. Let O ′ ’s that shrink to distinct i i points a ′ 1 , . . . , a ′ k ∈ Ω in the scaling limit as n → ∞ . Then M f ( Ω n \ O ( n ) ∪ · · · ∪ O ( n ) k ) → exp( − E ) 1 exp( − E ′ ) , ( n ) ∪ · · · ∪ O ′ ( n ) ) M f ( Ω n \ O ′ 1 k where E ′ is the heat energy of the system obtained from S by moving the point heat sources to positions a ′ 1 , . . . , a ′ k .

Recommend


More recommend