lower bounds on the probability of error of polar codes
play

Lower Bounds on the Probability of Error of Polar Codes Boaz Shuval - PowerPoint PPT Presentation

Lower Bounds on the Probability of Error of Polar Codes Boaz Shuval and Ido Tal Andrew and Erna Viterbi Department of Electrical Engineering Technion - Israel Institute of Technology Haifa 32000, Israel June 2017 Introduction Arkans


  1. Lower Bounds on the Probability of Error of Polar Codes Boaz Shuval and Ido Tal Andrew and Erna Viterbi Department of Electrical Engineering Technion - Israel Institute of Technology Haifa 32000, Israel June 2017

  2. Introduction ◮ Arıkan’s Polar Codes asymptotically achieve capacity ◮ Analysis based on upper bounds on P e ◮ How tight is the upper bound? ◮ Existing lower bounds on P e are trivial ◮ In this work: Improved lower bounds Boaz Shuval and Ido Tal (Technion) Lower bounds on P e of Polar Codes June 2017 2 / 20

  3. Preliminaries ◮ BMS Channel W ( y | u ) ◮ Polar Construction → N = 2 n synthetic channels 1 , u i − 1 W i ( y N | u i ) 1 ◮ Polarize to “good” ( A ) and “bad” channels ◮ Transmit frozen bits on “bad” channels ◮ Successive Cancellation Decoding � i ∈ A c u i ˆ 1 , ˆ u i − 1 U i ( y N ) = 1 , ˆ u i − 1 1 arg max u i W i ( y N | u i ) i ∈ A 1 Boaz Shuval and Ido Tal (Technion) Lower bounds on P e of Polar Codes June 2017 3 / 20

  4. SC Probability of Error Let E i = event that W i errs SC probability of error: �� � = P E i P SC e i ∈ A Bounds: � i ∈ A P { E i } ≤ P SC ≤ P { E i } max e i ∈ A Question How do we improve the lower bound? Boaz Shuval and Ido Tal (Technion) Lower bounds on P e of Polar Codes June 2017 4 / 20

  5. Improving the Lower Bound Two ingredients: ◮ If A ′ ⊆ A then �� � � � � P E i ≥ P E i i ∈ A i ∈ A ′ ◮ Bonferroni bound: �� � � � P E i ≥ P { E i } − P { E i ∩ E j } i ∈ A i ∈ A i , j ∈ A , i < j Recall P { E i ∩ E j } = P { E i } + P { E j } − P { E i ∪ E j } Approach Lower bounds on P { E i ∪ E j } = ⇒ better lower bounds on P SC e Boaz Shuval and Ido Tal (Technion) Lower bounds on P e of Polar Codes June 2017 5 / 20

  6. Previous Work ◮ Mori & Tanaka [2009] ◮ Density evolution to approximate joint distribution ⇒ P { E i ∪ E j } ◮ Exact for BEC ◮ Parizi & Telatar [2013] ◮ Only for BEC ◮ Track correlation between erasure events ◮ Showed: union bound asymptotically tight for BEC Boaz Shuval and Ido Tal (Technion) Lower bounds on P e of Polar Codes June 2017 6 / 20

  7. New Lower Bound ◮ Works for any initial BMS channel W ◮ Provable lower bound on P SC e ◮ Approximates joint distribution of two synthetic channels W a , b ◮ Controls output alphabet sizes ◮ Coincides with lower bounds for BEC ◮ Better than existing lower bound for general BMS channels Boaz Shuval and Ido Tal (Technion) Lower bounds on P e of Polar Codes June 2017 7 / 20

  8. Numerical Results 10 − 3 Upper Bound Previous Lower Bound Probability of Error 10 − 5 10 − 7 10 − 9 10 − 11 0 . 12 0 . 14 0 . 16 0 . 18 0 . 2 0 . 22 Crossover Probability Boaz Shuval and Ido Tal (Technion) Lower bounds on P e of Polar Codes June 2017 8 / 20

  9. Numerical Results 10 − 3 Upper Bound Previous Lower Bound New Lower Bound Probability of Error 10 − 5 10 − 7 10 − 9 10 − 11 0 . 12 0 . 14 0 . 16 0 . 18 0 . 2 0 . 22 Crossover Probability Boaz Shuval and Ido Tal (Technion) Lower bounds on P e of Polar Codes June 2017 8 / 20

  10. Conceptual Algorithm Input: ◮ BMS channel W ◮ a-channel transform list α 1 , α 2 , . . . , α n α, β ∈ {− , + } ◮ b-channel transform list β 1 , β 2 , . . . , β n e ( W a n , b n ) Output: Lower bound on P SC Steps: 1. Initialize: W 0 , 0 = W 2. For i = 1 , . . . , n , do: ◮ W a i , b i ← � JointlyPolarize α i ,β i ( W a i − 1 , b i − 1 ) LowerBound ( P SC e ( W a n , b n )) 3. Compute: Boaz Shuval and Ido Tal (Technion) Lower bounds on P e of Polar Codes June 2017 9 / 20

  11. Conceptual Algorithm Input: ◮ BMS channel W ◮ a-channel transform list α 1 , α 2 , . . . , α n α, β ∈ {− , + } ◮ b-channel transform list β 1 , β 2 , . . . , β n e ( W a n , b n ) Output: Lower bound on P SC alphabet Steps: size grows 1. Initialize: W 0 , 0 = W 2. For i = 1 , . . . , n , do: control ◮ W a i , b i ← � JointlyPolarize α i ,β i ( W a i − 1 , b i − 1 ) alphabet size ◮ W a i , b i ← � JointlyUpgrade ( W a i , b i ) LowerBound ( P SC e ( W a n , b n )) 3. Compute: Boaz Shuval and Ido Tal (Technion) Lower bounds on P e of Polar Codes June 2017 9 / 20

  12. SC Decoding – suboptimal ( y a , y b ) ( u a , u b ) ( 0 , 0 ) ( 0 , 1 ) ( 1 , 0 ) ( 1 , 1 ) ( 0 , 0 ) 0 . 30 0 . 04 0 . 04 0 . 62 ( 0 , 1 ) 0 . 44 0 . 46 0 . 01 0 . 09 ( 1 , 0 ) 0 . 22 0 . 49 0 . 24 0 . 05 ( 1 , 1 ) 0 . 05 0 . 54 0 . 32 0 . 09 Boaz Shuval and Ido Tal (Technion) Lower bounds on P e of Polar Codes June 2017 10 / 20

  13. SC Decoding – suboptimal ( y a , y b ) ( u a , u b ) ( 0 , 0 ) ( 0 , 1 ) ( 1 , 0 ) ( 1 , 1 ) ( 0 , 0 ) 0 . 30 0 . 04 0 . 04 0 . 62 ( 0 , 1 ) 0 . 44 0 . 46 0 . 01 0 . 09 ( 1 , 0 ) 0 . 22 0 . 49 0 . 24 0 . 05 ( 1 , 1 ) 0 . 05 0 . 54 0 . 32 0 . 09 ◮ Optimal decoder: P e = 0 . 52 Boaz Shuval and Ido Tal (Technion) Lower bounds on P e of Polar Codes June 2017 10 / 20

  14. SC Decoding – suboptimal ( y a , y b ) ( u a , u b ) ( 0 , 0 ) ( 0 , 1 ) ( 1 , 0 ) ( 1 , 1 ) ( 0 , 0 ) 0 . 30 0 . 04 0 . 04 0 . 62 ( 0 , 1 ) 0 . 44 0 . 46 0 . 01 0 . 09 ( 1 , 0 ) 0 . 22 0 . 49 0 . 24 0 . 05 ( 1 , 1 ) 0 . 05 0 . 54 0 . 32 0 . 09 ◮ Optimal decoder: P e = 0 . 52 ◮ SC decoder: P SC = 0 . 7075 e Boaz Shuval and Ido Tal (Technion) Lower bounds on P e of Polar Codes June 2017 10 / 20

  15. SC Decoding – suboptimal Degrade: ( 0 , 0 ) , ( 1 , 1 ) → ( 0 ′ , 0 ′ ) ( 0 , 1 ) , ( 1 , 0 ) → ( 1 ′ , 1 ′ ) ( y a , y b ) ( y a , y b ) ( u a , u b ) ( u a , u b ) ( 0 ′ , 0 ′ ) ( 1 ′ , 1 ′ ) ( 0 , 0 ) ( 0 , 1 ) ( 1 , 0 ) ( 1 , 1 ) ( 0 , 0 ) ( 0 , 0 ) 0 . 30 0 . 04 0 . 04 0 . 62 0 . 92 0 . 08 ( 0 , 1 ) ( 0 , 1 ) 0 . 44 0 . 46 0 . 01 0 . 09 0 . 53 0 . 47 ( 1 , 0 ) ( 1 , 0 ) 0 . 22 0 . 49 0 . 24 0 . 05 0 . 27 0 . 73 ( 1 , 1 ) ( 1 , 1 ) 0 . 05 0 . 54 0 . 32 0 . 09 0 . 14 0 . 86 ◮ Optimal decoder: P e = 0 . 52 ◮ SC decoder: P SC = 0 . 7075 e Boaz Shuval and Ido Tal (Technion) Lower bounds on P e of Polar Codes June 2017 10 / 20

  16. SC Decoding – suboptimal Degrade: ( 0 , 0 ) , ( 1 , 1 ) → ( 0 ′ , 0 ′ ) ( 0 , 1 ) , ( 1 , 0 ) → ( 1 ′ , 1 ′ ) ( y a , y b ) ( y a , y b ) ( u a , u b ) ( u a , u b ) ( 0 ′ , 0 ′ ) ( 1 ′ , 1 ′ ) ( 0 , 0 ) ( 0 , 1 ) ( 1 , 0 ) ( 1 , 1 ) ( 0 , 0 ) ( 0 , 0 ) 0 . 30 0 . 04 0 . 04 0 . 62 0 . 92 0 . 08 ( 0 , 1 ) ( 0 , 1 ) 0 . 44 0 . 46 0 . 01 0 . 09 0 . 53 0 . 47 ( 1 , 0 ) ( 1 , 0 ) 0 . 22 0 . 49 0 . 24 0 . 05 0 . 27 0 . 73 ( 1 , 1 ) ( 1 , 1 ) 0 . 05 0 . 54 0 . 32 0 . 09 0 . 14 0 . 86 ◮ Optimal decoder: P e = 0 . 52 ◮ Optimal decoder: P e = 0 . 555 ◮ SC decoder: P SC = 0 . 7075 ◮ SC decoder: P SC = 0 . 555 e e Boaz Shuval and Ido Tal (Technion) Lower bounds on P e of Polar Codes June 2017 10 / 20

  17. SC Decoding – suboptimal Degrade: ( 0 , 0 ) , ( 1 , 1 ) → ( 0 ′ , 0 ′ ) ( 0 , 1 ) , ( 1 , 0 ) → ( 1 ′ , 1 ′ ) ( y a , y b ) ( y a , y b ) ( u a , u b ) ( u a , u b ) ( 0 ′ , 0 ′ ) ( 1 ′ , 1 ′ ) ( 0 , 0 ) ( 0 , 1 ) ( 1 , 0 ) ( 1 , 1 ) ( 0 , 0 ) ( 0 , 0 ) 0 . 30 0 . 04 0 . 04 0 . 62 0 . 92 0 . 08 ( 0 , 1 ) ( 0 , 1 ) 0 . 44 0 . 46 0 . 01 0 . 09 0 . 53 0 . 47 ( 1 , 0 ) ( 1 , 0 ) 0 . 22 0 . 49 0 . 24 0 . 05 0 . 27 0 . 73 ( 1 , 1 ) ( 1 , 1 ) 0 . 05 0 . 54 0 . 32 0 . 09 0 . 14 0 . 86 ◮ Optimal decoder: P e = 0 . 52 ◮ Optimal decoder: P e = 0 . 555 ◮ SC decoder: P SC = 0 . 7075 ◮ SC decoder: P SC = 0 . 555 e e Conclusion SC decoder is not ordered by degradation Boaz Shuval and Ido Tal (Technion) Lower bounds on P e of Polar Codes June 2017 10 / 20

  18. New Decoder Joint channel: W a , b ( y a , y b | u a , u b ) ◮ New Decoder: minimize P { E a ∪ E b } using ˆ u a = φ a ( y a ) ˆ u b = φ b ( y b ) ◮ Notation: P ∗ e ◮ Generally requires exhaustive search Boaz Shuval and Ido Tal (Technion) Lower bounds on P e of Polar Codes June 2017 11 / 20

  19. New Decoder Joint channel: W a , b ( y a , y b | u a , u b ) ◮ New Decoder: minimize P { E a ∪ E b } using ˆ u a = φ a ( y a ) ˆ u b = φ b ( y b ) ◮ Notation: P ∗ e ( W a , b ) ≥ P ∗ e ( W a , b ) P SC e ◮ Generally requires exhaustive search Boaz Shuval and Ido Tal (Technion) Lower bounds on P e of Polar Codes June 2017 11 / 20

  20. New Decoder Joint channel: W a , b ( y a , y b | u a , u b ) ◮ New Decoder: minimize P { E a ∪ E b } using ˆ u a = φ a ( y a ) ˆ u b = φ b ( y b ) ◮ Notation: P ∗ e ( W a , b ) ≥ P ∗ e ( W a , b ) P SC e ◮ Generally requires exhaustive search ◮ For polar codes: ◮ easily found ◮ ordered by (proper) joint degradation: p � W a , b ⇒ P ∗ e ( W a , b ) ≥ P ∗ e ( Q a , b ) Q a , b Boaz Shuval and Ido Tal (Technion) Lower bounds on P e of Polar Codes June 2017 11 / 20

  21. Upgrading Procedures Overview Goal: p � W a , b ◮ Find Q a , b ◮ Reduce output alphabet of one marginal ◮ Leave other marginal unchanged New joint channel upgrading procedures: ◮ A-channel upgrade ◮ B-channel upgrade Boaz Shuval and Ido Tal (Technion) Lower bounds on P e of Polar Codes June 2017 12 / 20

  22. Joint Synthetic Channels – D -value Representation General form of Joint channel: W a , b ( y a , u a , y r | u a , u b ) � �� � y b D -values for BMS channel: d ( y ) = W ( y | 0 ) − W ( y | 1 ) W ( y | 0 ) + W ( y | 1 ) May switch to D -value representation: W a , b ( y a , u a , d b | u a , u b ) Lemma W a , b ( y a , u a , y r | u a , u b ) ≡ W a , b ( y a , u a , d b | u a , u b ) Boaz Shuval and Ido Tal (Technion) Lower bounds on P e of Polar Codes June 2017 13 / 20

Recommend


More recommend