local geometry of nonregular carnot carath eodory spaces
play

LOCAL GEOMETRY OF NONREGULAR CARNOT-CARATH EODORY SPACES AND - PowerPoint PPT Presentation

LOCAL GEOMETRY OF NONREGULAR CARNOT-CARATH EODORY SPACES AND APPLICATIONS TO NONLINEAR CONTROL THEORY Svetlana Selivanova Sobolev Institute of Mathematics, Novosibirsk Bia lowie za, Poland, XXXI Workshop on Geometric Methods in


  1. LOCAL GEOMETRY OF NONREGULAR CARNOT-CARATH´ EODORY SPACES AND APPLICATIONS TO NONLINEAR CONTROL THEORY Svetlana Selivanova Sobolev Institute of Mathematics, Novosibirsk Bia� lowieˆ za, Poland, XXXI Workshop on Geometric Methods in Physics 24 June – 30 June, 2012

  2. References Selivanova S.V. Metric geometry of nonregular weighted Carnot- Carath´ eodory spaces, arXiv:1206.6608v1. Selivanova S.V. Local geometry of nonregular weighted quasi- metric Carnot-Caratheodory spaces // Doklady Mathematics, 2012. Vol. 443, No. 1, P. 16–21.

  3. Motivation Geometric control theory . ⋄ The linear system of ODE ( x ∈ M N , m < N ) m � x = ˙ a i ( t ) X i ( x ) (1) i =1 is locally controllable iff Lie { X 1 , X 2 , . . . , X m } = T M , i.e. the “horizontal” distribution H M = { X 1 , X 2 , . . . , X m } is bracket-generating: • span { X I ( v ) : | I | ≤ M } = T v M for all v ∈ M , where X I = [ X i 1 , [ X i 2 , . . . , [ X i k − 1 , X i k ], | I | = k (H¨ ormander’s condition) • M is the depth of the sub-Riemannian space M • Rashevsky-Chow theorem ⇒ on M there exists an intrinsic metric d c ( u, v ) = inf { L ( γ ) } γ − horizontal γ (0)= u,γ (1)= v

  4. Motivation Geometric control theory . ⋄ The linear system of ODE ( x ∈ M N , m < N ) m � x = ˙ a i ( t ) X i ( x ) (2) i =1 is locally controllable iff Lie { X 1 , X 2 , . . . , X m } = T M , i.e. the “horizontal” distribution H M = { X 1 , X 2 , . . . , X m } is bracket-generating: • span { X I ( v ) : | I | ≤ M } = T v M for all v ∈ M , where X I = [ X i 1 , [ X i 2 , . . . , [ X i k − 1 , X i k ], | I | = k (H¨ ormander’s condition) • M is the depth of the sub-Riemannian space M • Rashevsky-Chow theorem ⇒ on M there exists an intrinsic metric d c ( u, v ) = γ − horizontal γ (0)= u,γ (1)= v { L ( γ ) } inf

  5. Motivation Geometric control theory . ⋄ The linear system of ODE ( x ∈ M N , m < N ) m � x = ˙ a i ( t ) X i ( x ) (3) i =1 is locally controllable iff Lie { X 1 , X 2 , . . . , X m } = T M , i.e. the “horizontal” distribution H M = { X 1 , X 2 , . . . , X m } is bracket-generating: • span { X I ( v ) : | I | ≤ M } = T v M for all v ∈ M , where X I = [ X i 1 , [ X i 2 , . . . , [ X i k − 1 , X i k ], | I | = k (H¨ ormander’s condition) • M is the depth of the sub-Riemannian space M • Rashevsky-Chow theorem ⇒ on M there exists an intrinsic metric d c ( u, v ) = inf { L ( γ ) } γ − horizontal γ (0)= u,γ (1)= v

  6. • Filtration H M = H 1 ⊆ H 2 ⊆ . . . ⊆ H M = T M such that [ H 1 , H i ]= H i +1 (H¨ ormander’s condition). Here H k ( v ) = span { [ X i 1 , [ X i 2 , . . . , [ X i k − 1 , X i k ] . . . ]( v ) : X i j ∈ H 1 } • A point u ∈ M is called regular if dim H k ( v ) = const in some neighborhood v ∈ U ( u ) ⊆ M . Otherwise, u is called nonregular.

  7. • Examples. Regular: Heisenberg groups, Carnot groups, roto- translation group, etc. Nonregular: Groushin-type planes (related to the PDE ∂ 2 u ∂x 2 + x 2 k∂ 2 u ∂x 2 = f ) M = R 2 . H 1 = span { X 1 = ∂ ∂x , X 2 = x k ∂ ∂y } . The axis x = 0 consists of nonregular points; the depth is M = k + 1. There are no regular C-C structures on R 2 !

  8. ⋄ (J.-M. Coron, etc.) The sufficient condition of controllability of the nonlinear system   . x = f ( x, a ) , ˙ (4)  x (0) = x 0 , is that � h (0) : h ∈ Lie ∂ | α | ∂a α f (0 , · ) , α ∈ N M � span = T x 0 M for some M ∈ N . Letting � ∂ α � F ν = ∂a α f (0 , · ) : | α | ≤ ν and H k ( q ) = span { [ X 1 , [ X 2 , . . . , [ X i − 1 , X i ] . . . ]( q ) : X j ∈ F ν j , ν 1 + ν 2 + . . . + ν i ≤ k } , one obtains a weighted filtration H 1 ⊆ H 2 ⊆ . . . ⊆ H M = T M , such that [ H i , H j ] ⊆ H i + j more general than the H¨ ormander condition

  9. ⋄ (J.-M. Coron, etc.) The sufficient condition of controllability of the nonlinear system   . x = f ( x, a ) , ˙ (5)  x (0) = x 0 , is that � h (0) : h ∈ Lie ∂ | α | ∂a α f (0 , · ) , α ∈ N M � span = T x 0 M for some M ∈ N . Letting � ∂ α � F ν = ∂a α f (0 , · ) : | α | ≤ ν and H k ( q ) = span { [ X 1 , [ X 2 , . . . , [ X i − 1 , X i ] . . . ]( q ) : X j ∈ F ν j , ν 1 + ν 2 + . . . + ν i ≤ k } , one obtains a weighted filtration H 1 ⊆ H 2 ⊆ . . . ⊆ H M = T M , such that [ H i , H j ] ⊆ H i + j more general than the H¨ ormander condition

  10. Some references concerning the underlying geometry • Nagel, Stein, Wainger 1985; • Gromov 1996; • Coron 1996; • Christ, Nagel, Stein, Wainger 1999; • Rampazzo, Sussmann 2001, 2007 • Tao, Wright 2003 • Agrachev, Marigo 2003; • Montanari, Morbidelli 2004, 2011; • Street 2011 • Karmanova, Vodopyanov 2007–2009; Karmanova 2010, 2011.

  11. Weighted Carnot-Carath´ eodory spaces • M , dim M = N is a smooth connected manifold . • X 1 , X 2 , . . . , X q ∈ C 2 M +1 span T M ; deg X i := d i , d 1 ≤ . . . ≤ d q . • X I = [ X i 1 , [ . . . , [ X i k − 1 , X i k ] . . . ], where I = ( i 1 , . . . , i k ); | I | h := d i 1 + . . . + d i k . • H j = span { X I | | I | h ≤ j } . H M = H 1 ⊆ H 2 ⊆ . . . ⊆ H M = T M [ H i , H j ] ⊆ H i + j . Here [ H i , H j ] is the linear span of commutators of the vector field generating H i and H j . Model case: d 1 := 1 , d q := M .

  12. Problems 1. In a neighborhood of a nonregular point, the basis Y 1 , Y 2 , . . . , Y N , . associated to the filtration H 1 ⊆ H 2 ⊆ . . . ⊆ H M , varies discon- tinuously from point to point. 2. In the case of a weighted filtration the intrinsic Carnot- Carath´ eodory metric d c might not exist. Example (Stein “Harmonic Analysis”) M = R N with standard basis ∂ x 1 , ∂ x 2 , . . . , ∂ x N . Let deg( ∂ x i ) = 1 for 1 ≤ i ≤ m ; deg( ∂ x i ) > 1 for i > m . Evidently, H i = span { ∂ x 1 , ∂ x 2 , . . . , ∂ x i } satisfy [ H i , H j ] ⊆ H i + j , since [ H i , H j ] = { 0 } . But H 1 = span { ∂ x i } m i =1 (for any m < N ) does not span R N .

  13. 3. Different choices of weights may lead to different combina- tions of regular and nonregular points. . Example M = R 3 ; vector fields { X 1 = ∂ y , X 2 = ∂ x + y∂ t , X 3 = ∂ x } . Nontrivial commutator: [ X 1 , X 2 ] = ∂ t . 1. Let deg( X i ) := 1, i = 1 , 2 , 3. Then deg([ X 1 , X 2 ]) = 2 and H 1 = span { X 1 , X 2 , X 3 } , H 2 = H 1 ∪ span { [ X 1 , X 2 ] } . In this case { y = 0 } is a plane consisting of nonregular points. 2. Let deg( X 1 ) := a, deg( X 2 ) := b, deg( X 3 ) := a + b , a ≤ b . Then deg([ X 1 , X 2 ]) = a + b ⇒ H a = span { X 1 } , H b = H a ∪ span { X 2 } , H a + b = H a ∪ H b ∪ span { X 3 , [ X 1 , X 2 ] } In this case all points of R 3 are regular.

  14. 3. Different choices of weights may lead to different combina- tions of regular and nonregular points. . Example M = R 3 ; vector fields { X 1 = ∂ y , X 2 = ∂ x + y∂ t , X 3 = ∂ x } . Nontrivial commutator: [ X 1 , X 2 ] = ∂ t . 1. Let deg( X i ) := 1, i = 1 , 2 , 3. Then deg([ X 1 , X 2 ]) = 2 and H 1 = span { X 1 , X 2 , X 3 } , H 2 = H 1 ∪ span { [ X 1 , X 2 ] } . In this case { y = 0 } is a plane consisting of nonregular points. 2. Let deg( X 1 ) := a, deg( X 2 ) := b, deg( X 3 ) := a + b , a ≤ b . Then deg([ X 1 , X 2 ]) = a + b ⇒ H a = span { X 1 } , H b = H a ∪ span { X 2 } , H a + b = H a ∪ H b ∪ span { X 3 , [ X 1 , X 2 ] } In this case all points of R 3 are regular.

  15. Questions Are there some analogs of classical results of sub-Riemannian geometry for weighted C-C spaces? ⋄ Results on existence and the algebraic structure of the Gro- mov’s tangent cone to M = ( M , d c ) at a fixed point u ∈ M : it is a homogeneous space of a Carnot group ( G/H, d u c ). ⋄ Local approximation theorem: if d c ( u, v ) = O ( ε ) and d c ( u, v ) = c ( v, w ) | = O ( ε 1+ 1 O ( ε ), then | d c ( u, v ) − d u M ). ⋄ Methods of optimal motion planning for the system (1).

  16. Metric structure We work with the following quasimetric Nagel, Stein, Wainger 1985: ρ ( v, w ) = inf { δ > 0 | there is a curve γ : [0 , 1] → U , � w I X I ( γ ( t )) , | w I | < δ | I | h } . γ (0) = v, γ (1) = w, ˙ γ ( t ) = | I | h ≤ M Here X I = [ X i 1 , [ . . . , [ X i k − 1 , X i k ] . . . ], where I = ( i 1 , . . . , i k ); | I | h = d i 1 + . . . + d i k . 1 deg Yi } For the regular case ρ ( v, w ) = d ∞ ( v, w ) = i =1 ,...,N {| v i | max

  17. Quasimetric space ( X, d X ) X is a topoogical space; d X : X × X → R + is such that (1) d X ( u, v ) ≥ 0; d X ( u, v ) = 0 ⇔ u = v ; (2) d X ( u, v ) ≤ c X d X ( v, u ), where 1 ≤ c X < ∞ uniformly on u, v ∈ X (generalized symmetry property); (3) d X ( u, v ) ≤ Q X ( d X ( u, w ) + d X ( w, v )), where 1 ≤ Q X < ∞ uniformly on all u, v, w ∈ X (generalized triangle inequality); (4) d X ( u, v ) upper semicontinuous on the first argument Q X = c X = 1 ⇒ ( X, d X ) metric space

  18. Show picture

  19. Basic considerations . • Choice of basis { Y 1 , Y 2 , . . . , Y N } among { X I } | I | h ≤ M : ∗ Y 1 , Y 2 , . . . , Y N are linearly independent at u (hence in some neighborhood U ( u )); N � ∗ deg Y i is minimal; i =1 N � ∗ | I j | is minimal, where Y j = X I j . j =1 • Coordinates of the second kind Φ u : R N → U Φ u ( x 1 , . . . , x N ) = exp( x 1 Y 1 ) ◦ exp( x 2 Y 2 ) ◦ . . . ◦ exp( x N Y N )( u )

Recommend


More recommend