carath eodory numbers and shape reconstruction
play

Carath eodory Numbers and Shape Reconstruction The - PowerPoint PPT Presentation

Carath eodory Numbers and Shape Reconstruction The Multi-Dimensional Truncated Moment Problem Philipp J. di Dio TU Berlin IWOTA2019, Lisbon, 26th July 2019 Based on joint work with Mario Kummer and Konrad Schm udgen Philipp J. di Dio (TU


  1. Carath´ eodory Numbers and Shape Reconstruction The Multi-Dimensional Truncated Moment Problem Philipp J. di Dio TU Berlin IWOTA2019, Lisbon, 26th July 2019 Based on joint work with Mario Kummer and Konrad Schm¨ udgen Philipp J. di Dio (TU Berlin) Carath´ eodory Numbers + Shape Reconstruction IWOTA2019, Lisbon, 26th July 2019 1 / 27

  2. Introduction Introduction Introduction A - finite dimensional space of measurable functions on measurable space X Example: A = R [ x 1 , . . . , x n ] ≤ d with X = R n L : A → R - linear functional L moment functional iff L ( a ) = � X a ( x ) d µ ( x ) for all a ∈ A µ - representing measure Example: l x ( a ) := a ( x ) point evaluation at x ∈ X L = � k Example: i =1 c i · l x i with c i > 0 Philipp J. di Dio (TU Berlin) Carath´ eodory Numbers + Shape Reconstruction IWOTA2019, Lisbon, 26th July 2019 2 / 27

  3. Introduction Richter’s Theorem Richter’s Theorem Theorem (Richter 1957 1 ) Let A be a finite dimensional space of measurable functions on a measurable space X . Then every moment functional L : A → R has a k -atomic representing measure: k � L = c i · l x i ( c i > 0) i =1 with l x i point evaluation at x i ∈ X and k ≤ dim A . Previous/parallel works: Wald, 2 Rosenbloom, 3 Tchakaloff, 4 and Rogosinski 5 1 H. Richter: Parameterfreie Absch¨ atzung und Realisierung von Erwartungswerten , Bl. Dtsch. Ges. Versmath. 3 (1957), 147–161 2 A. Wald: Limits of distribution function determined by absolute moment and inequalities satisfied by absolute moments , Trans. Amer. Math. Soc. 46 (1939), 280–306 3 P. C. Rosenbloom: Quelque classes de probl` emaux. II , Bull. Soc. Math. France 80 eme extr´ (1952), 183–215 4 M. V. Tchakaloff: Formules de cubatures m´ egatifs , Bull. Sci. echaniques a coefficients non n´ Math. 81 (1957), 123–134 5 W. W. Rogosinski: Moments of non-negative mass , Proc. Roy. Soc. Lond. A 245 (1958) Philipp J. di Dio (TU Berlin) Carath´ eodory Numbers + Shape Reconstruction IWOTA2019, Lisbon, 26th July 2019 3 / 27

  4. Setting Records Straight Philipp J. di Dio (TU Berlin) Carath´ eodory Numbers + Shape Reconstruction IWOTA2019, Lisbon, 26th July 2019 4 / 27

  5. Richter’s Theorem was known before 2006 H. Richter: Parameterfreie Absch¨ atzung und Realisierung von Erwartungswerten , Bl. Dtsch. Ges. Versmath. 3 (1957), 147–161 J. H. B. Kemperman: The General Moment Problem, a Geometric Approach , Ann. Math. Stat. 39 (1968), 93–122 J. H. B. Kemperman: Moment problems with convexity conditions I , Optimizing Methods in Statistics (J. S. Rustagi, ed.), Acad. Press, 1971, pp. 115–178 C. F. Floudas, P. M. Pardalos (eds.): Encyclopedia of J. H. B. Kemperman: Geometry of the optimization , vol. 1, Kluwer moment problem , Proc. Sym. Appl. Academic Publishers, Math. 37 (1987), 16–53 Dordrecht, 2001, pp. 198–199. Philipp J. di Dio (TU Berlin) Carath´ eodory Numbers + Shape Reconstruction IWOTA2019, Lisbon, 26th July 2019 5 / 27

  6. J. H. B. Kemperman: The General Moment Problem, a Geometric Approach , Ann. Math. Stat. 39 (1968), 93–122: . . . [more introduction] . . . Philipp J. di Dio (TU Berlin) Carath´ eodory Numbers + Shape Reconstruction IWOTA2019, Lisbon, 26th July 2019 6 / 27

  7. More on the early history of Richter’s Theorem PdD + K. Schm¨ udgen: The truncated moment problem: The moment cone , arXiv1809.00584 Philipp J. di Dio (TU Berlin) Carath´ eodory Numbers + Shape Reconstruction IWOTA2019, Lisbon, 26th July 2019 7 / 27

  8. Set of Atoms = Core Variety Set of Atoms = Core Variety Core Variety introduced by L. Fialkow 6 udgen 7 , 8 Set of Atoms introduced by K. Schm¨ Set of Atoms = Core Variety: L : A → R moment functional ⇒ core variety = set of atoms ( � = ∅ ) intense studies of set of atoms already presented in Marsaille (Oct. 2015) and Oberwolfach (March 2017) by K. Schm¨ udgen in talks G. Blekherman + L. Fialkow: 9 for Hausdorff (topological) space Set of Atoms = Core Variety udgen: 10 Equivalence for measurable spaces PdD + K. Schm¨ from geometric perspective by Karlin, Shapley (1953) and Kemperman (1968) 6 L. Fialkow: The core variety of a multisequence in the truncated moment problem , J. Math. Anal. Appl. 456 (2017) 946–969 7 PdD, K. Schm¨ udgen: The truncated moment problem: Atoms, determinacy, and core variety , J. Funct. Anal. 274 (2018), 3124–3148 8 K. Schm¨ udgen: The Moment Problem , Springer, 2018 9 GB + LF: The core variety and representing measures in the truncated moment problem , arXiv1804.0427 10 PdD, K. Schm¨ udgen: The multidimensional truncated moment problem: The moment cone , arXiv1809.00584, Prop. 29 + Thm. 30 Philipp J. di Dio (TU Berlin) Carath´ eodory Numbers + Shape Reconstruction IWOTA2019, Lisbon, 26th July 2019 8 / 27

  9. Set of Atoms = Core Variety Karlin/Shapley’s 11 + Kemperman 12 Geometric Approach 11 S. Karlin and L. S. Shapley, Geometry of moment spaces , Mem. Amer. Math. Soc. 12 (1953) 12 J. H. B. Kemperman: The General Moment Problem, a Geometric Approach , Ann. Math. Stat. 39 (1968), 93–122 Philipp J. di Dio (TU Berlin) Carath´ eodory Numbers + Shape Reconstruction IWOTA2019, Lisbon, 26th July 2019 9 / 27

  10. History Lesson is over! Back to New Stuff Philipp J. di Dio (TU Berlin) Carath´ eodory Numbers + Shape Reconstruction IWOTA2019, Lisbon, 26th July 2019 10 / 27

  11. Carath´ eodory Number Definition and Bounds Carath´ eodory Number: Definition and Bounds Richter ’57: Every moment functional L : A → R is of the form � k i =1 c i · l x i Carath´ eodory number C A ( L ) of L = minimal k Richter ’57: k ≤ dim A Carath´ eodory number C A = max L C A ( L ) Bounds: Richter ’57: 1 ≤ C A ( L ) ≤ C A ≤ m Thm: 13 A = R [ x 1 , . . . , x n ] ≤ d , X = R n , then � �� � n + d 1 ≤ C A . n +1 n Thm: 14 X and A “nice”, then C A ≤ dim A − 1 . Thm: 13 If X countable, then C A = dim A . Thm: 13 If a ≥ 0 with Z ( a ) finite, then dim span { l x | x ∈ Z ( a ) } ≤ C A . 13 PdD, K. Schm¨ udgen: The multidimensional truncated moment problem: Carath´ eodory numbers , J. Math. Anal. Appl. 461 (2018) 1606–1638. 14 PdD: The multidimensional truncated moment problem: Gaussian and log-normal mixtures, eodory numbers, and set of atoms , Proc. Amer. Math. Soc. 147 (2019) 3021–3038 their Carath´ Philipp J. di Dio (TU Berlin) Carath´ eodory Numbers + Shape Reconstruction IWOTA2019, Lisbon, 26th July 2019 11 / 27

  12. Carath´ eodory Number Definition and Bounds udgen 13 ) Theorem (PdD + K. Schm¨ If a ≥ 0 with finite zero set Z ( a ) , then dim span { l x | x ∈ Z ( a ) } ≤ C A . Proof: span { l x | x ∈ Z ( a ) } = Polyhedral Cone. udgen: 13 special polynomials on R 2 resp. P 2 : PdD + K. Schm¨ Motzkin polynomial: deg = 4 , # Z = 6 all lin. independent, i.e. C ≥ 6 Robinson polynomial: 15 deg = 6 , # Z = 10 all lin. independent, i.e. C ≥ 10 Harris polynomial: 16 deg = 10 , # Z = 30 all lin. independent, i.e. C ≥ 30 15 simplified proof of result by Curto + Fialkow; C = 11 by Kunert (Diss. 2014 Konstanz) 16 Kuhlmann ⇒ Reznick + Schm¨ udgen ⇒ PdD Philipp J. di Dio (TU Berlin) Carath´ eodory Numbers + Shape Reconstruction IWOTA2019, Lisbon, 26th July 2019 12 / 27

  13. Carath´ eodory Number Definition and Bounds udgen 13 ) Theorem (PdD + K. Schm¨ If a ≥ 0 with finite zero set Z ( a ) , then dim span { l x | x ∈ Z ( a ) } ≤ C A . C. Riener + M. Schweighofer: 17 grid G = { 1 , . . . , d } 2 = Z ( p 2 1 + p 2 2 ) with p i ( x 1 , x 2 ) = ( x i − 1) · · · ( x i − d ) C A ≥ d 2 . Result: { l x | x ∈ G } lin. ind. on R [ x 1 , x 2 ] ≤ 2 d ⇒ udgen: 18 extension to higher dimensions (calculations) PdD + K. Schm¨ PdD + M. Kummer: 19 coordinate ring R [ G ] ∼ = R [ x 1 , . . . , x n ] / ( p 1 , . . . , p n ) , homogenization R n = R [ x 0 , . . . , x n ] / ( p ∗ 1 , . . . , p ∗ n ) and its Hilbert function n � n � ( − 1) i · � HF R n ( k ) = · HF P n ( k − id ) i i =0 17 Optimization approaches to quadrature: New characterizations of Gaussian quadrature on the line and quadrature with few nodes on plane algebraic curves, on the plane and in higher dimensions , J. Complexity 45 (2018), 22–54 18 The multidimensional truncated Moment Problem: The Moment Cone , arXiv:1804.00584 19 The multidimensional truncated moment problem: Carath´ eodory numbers from Hilbert Functions , arXiv1903.00598 Philipp J. di Dio (TU Berlin) Carath´ eodory Numbers + Shape Reconstruction IWOTA2019, Lisbon, 26th July 2019 13 / 27

  14. Carath´ eodory Number Definition and Bounds Carath´ eodory Numbers from Hilbert Functions Theorem (PdD + M. Kummer 20 ) X ⊆ R n with non-empty interior. For A = R [ x 1 , . . . , x n ] ≤ 2 d on X we have � n + 2 d � � n + d � � n � C A ≥ − n · + , n n 2 and for A = R [ x 1 , . . . , x n ] ≤ 2 d +1 on X we have � n + 2 d + 1 � � n + d + 1 � � n + 1 � C A ≥ − n · + 3 · . n n 3 C A n,d C A n,d 1 − n lim inf ≥ and lim = 1 | A n,d | 2 n | A n,d | d →∞ n →∞ � n + d � For every ε > 0 and d ∈ N there exist n ∈ N : C n,d ≥ (1 − ε ) · . n 20 PdD, M. Kummer: The multidimensional truncated moment problem: Carath´ eodory Numbers from Hilbert Functions , arXiv1903.00598 Philipp J. di Dio (TU Berlin) Carath´ eodory Numbers + Shape Reconstruction IWOTA2019, Lisbon, 26th July 2019 14 / 27

Recommend


More recommend