Linear ODEs from an algebraic point of view Inna Scherbak (joint with Letterio Gatto ) Conference Legacy of Vladimir Arnold Fields Institute, Toronto November 24 – 28, 2014
r We solve the generic order linear ODE ( ) ( 1) ( 2) r r r r ( ) ( ) ( ) ... ( 1) ( ) 0 u t e u t e u t e u t 1 2 r page 1
r We solve the generic order linear ODE ( ) ( 1) ( 2) r r r r ( ) ( ) ( ) ... ( 1) ( ) 0 u t e u t e u t e u t 1 2 r 1 ,..., e e indeterminate constant coefficients, r ( ) [[ ]], [ ,..., ]. u t B t B e e 1 r r r page 1
r We solve the generic order linear ODE ( ) ( 1) ( 2) r r r r ( ) ( ) ( ) ... ( 1) ( ) 0 u t e u t e u t e u t 1 2 r 1 ,..., e e indeterminate constant coefficients, r ( ) [[ ]], [ ,..., ]. u t B t B e e 1 r r r Theorem 1: Let be given by , , h B j j r 1 j . h z j 2 r r 1 ... ( 1) e z e z e z j 1 2 r n t Then ( ) , 0 1, u t h j r j n j ! n n j is a fundamental system of solutions. page 1
r We solve the generic order linear ODE ( ) ( 1) ( 2) r r r r ( ) ( ) ( ) ... ( 1) ( ) 0 u t e u t e u t e u t 1 2 r 1 ,..., e e indeterminate constant coefficients, r ( ) [[ ]], [ ,..., ]. u t B t B e e 1 r r r Theorem 1: Let be given by , , h B j j r 1 j . h z j 2 r r 1 ... ( 1) e z e z e z j 1 2 r n t Then ( ) , 0 1, u t h j r j n j ! n n j is a fundamental system of solutions. ( 1 ) 1 ( ) r j u t ( ) ( ) generates this fundamental system: u t u t . r j 1 r page 1
r We solve the generic order linear ODE ( ) ( 1) ( 2) r r r r ( ) ( ) ( ) ... ( 1) ( ) 0 u t e u t e u t e u t 1 2 r 1 ,..., e e indeterminate constant coefficients, r ( ) [[ ]], [ ,..., ]. u t B t B e e 1 r r r Theorem 1: Let be given by , , h B j j r 1 1 ,..., e e j . the elementary h z r j 2 r r 1 ... ( 1) 1 , , e z e z e z sym functions in r j 1 2 r n j t , , h the complete sym Then ( ) , 0 1, u t h j r j functions: j n j 0 ( 0), h j ! n j n j 2 1, , ,... h h e h e e is a fundamental system of solutions. 0 1 1 2 1 2 ( 1 ) 1 ( ) r j u t ( ) ( ) generates this fundamental system: u t u t . r j 1 r page 1
( ) ( 1) ( 2) r r r r ( ) ( ) ( ) ... ( 1) ( ) 0 ' X M X u t e u t e u t e u t r 1 2 r ( ) j ( ) ( ) x t u t j ( ) x t 0 X ( ) x t 1 r page 2
( ) ( 1) ( 2) r r r r ( ) ( ) ( ) ... ( 1) ( ) 0 ' X M X u t e u t e u t e u t r 1 2 r ( ) j ( ) ( ) x t u t 0 1 0 0 j 0 0 1 0 ( ) x t 0 M r X 1 0 0 0 ( ) x t 1 r 1 2 3 r r r ( 1) ( 1) ( 1) e e e e 1 r r 1 r 2 page 2
( ) ( 1) ( 2) r r r r ( ) ( ) ( ) ... ( 1) ( ) 0 ' X M X u t e u t e u t e u t r 1 2 r ( ) j ( ) ( ) x t u t 0 1 0 0 j 0 0 1 0 ( ) x t 0 M r X 1 0 0 0 ( ) x t 1 r 1 2 3 r r r ( 1) ( 1) ( 1) e e e e 1 r r 1 r 2 c 0 ( ) exp , (0) X t M t C C X r c 1 r page 2
( ) ( 1) ( 2) r r r r ( ) ( ) ( ) ... ( 1) ( ) 0 ' X M X u t e u t e u t e u t r 1 2 r ( ) j ( ) ( ) x t u t 0 1 0 0 j 0 0 1 0 ( ) x t 0 M r X 1 0 0 0 ( ) x t 1 r 1 2 3 r r r ( 1) ( 1) ( 1) e e e e 1 r r 1 r 2 c 0 ( ) j ( ) exp , (0) X t M t C C X ( ) ( ), (0) u t x t u c r 0 j c 1 r page 2
( ) ( 1) ( 2) r r r r ( ) ( ) ( ) ... ( 1) ( ) 0 ' X M X u t e u t e u t e u t r 1 2 r ( ) j ( ) ( ) x t u t 0 1 0 0 j 0 0 1 0 ( ) x t 0 M r X 1 0 0 0 ( ) x t 1 r 1 2 3 r r r ( 1) ( 1) ( 1) e e e e 1 r r 1 r 2 c 0 ( ) j ( ) exp , (0) X t M t C C X ( ) ( ), (0) u t x t u c r 0 j c 1 r exp Remark: M t is the Wronski matrix of the standard r ( ), , ( ) v t v t fundamental system of the solutions to the ODE, , 0 1 r ( ) j (0) , that is (standard initial conditions). v 0 , 1 i j r i ij page 2
exp Theorem 2: The last column of is our universal fundamental system: M t r v v v u 0 1 1 1 r r ' ' ' v v v u 0 1 1 2 r r exp M t r ( 1) ( 1) ( 1) r r r v v v u 0 1 1 0 r k k t t ( ) , ... , ( ) u t h u t h 0 1 1 k r k r ! k ! k 0 1 k k r page 3
The universal and the standard fundamental systems are related as follows, u v v u r 1 h h h 1 ( 1) 0 1 e e e 1 0 1 2 r 2 1 r and 0 1 h h 0 1 1 e r u v v u ( 1) e 1 r 1 1 1 2 2 1 1 r 0 1 0 0 1 v u r u r v 0 0 0 1 0 0 0 1 r r 1 1 page 4
The universal and the standard fundamental systems are related as follows, u v v u r 1 h h h 1 ( 1) 0 1 e e e 1 0 1 2 r 2 1 r and 0 1 h h 0 1 1 e r u v v u ( 1) e 1 r 1 1 1 2 2 1 1 r 0 1 0 0 1 H E v u r u r v 0 0 0 1 0 0 0 1 r r 1 1 HE=I page 4
Recommend
More recommend