Linear algebra NEU 466M Instructor: Professor Ila R. Fiete Spring 2016
NotaBon • Matrices: upper-case A, B, U, W • Vector: bold , (usually) lower-case (handwriBng: ) x , y , v , w x → x • Elements of matrix, vector: lower-case a ij , b i , v j , u kl • Scalar numbers: lower-case, no indices a, b, c, γ , α
Vectors and matrices v 1 v 2 size (m x 1) column vector v = . . v i ∈ R . v ∈ R m v m a 11 a 12 a 1 m · · · a 21 a 22 a 2 m · · · A = size (n x m) matrix · · · · · · · · · · · · A ∈ R n × m a n 1 a n 2 a nm · · ·
What is a vector? geometric view v 1 v 3 v 2 v = . . v 2 . v m v 1 size (m x 1) column vector plotv in matlab
Vector length v 1 v 2 Length (norm): v = . . q . v 2 1 + v 2 || v || = 2 + · · · v 2 m v m || v ||
Vector-scalar product α v 1 α v 2 α v = . . . α v m geometric view α v v same direcBon, different length
Sum of vectors v 1 + u 1 v 2 + u 2 v , u ∈ R m v + u = . . . v m + u m geometric view v v + u u u v v u Adding vectors: stacking them end-to-end
Unit vector: any vector of length 1 v m u q X u 2 v 2 m = 1 v 2 1 + v 2 || v || = 2 + · · · v 2 m = 1 = t i i =1 e 3 ˆ e 2 ˆ e 1 ˆ Every point on (m-1) -dimensional sphere of unit radius in m- dim space is a unit vector
Vector, matrix transpose v 1 v 2 v T = [ v 1 v 2 · · · v m ] v = . . . v m size (m x 1) column vector size (1 x m) row vector a 11 a n 1 a 11 a 12 a 1 m · · · · · · a 21 a 22 a 2 m a 12 a 2 m · · · · · · A T = A = · · · · · · · · · · · · · · · · · · · · · a n 1 a n 2 a nm a 1 m a nm · · · · · · size (n x m) matrix size (m x n) matrix
Vector norm as an inner product m v T v = [ v 1 v 2 · · · v m ] X v 2 = || v || 2 v 1 = i v 2 i =1 = . . . v m
Inner product (dot product) v , u ∈ R m u T v = [ u 1 u 2 · · · u m ] X v 1 u i v i = v 2 i = . . . v m u T v = || u |||| v || cos( θ ) Geometric view: projecBon of v on u , Bmes norm of u: u v || u |||| v || cos( θ )
Inner product (dot product) u , v ∈ R 2 � � 1 v 1 Example: unit vector along x -axis, u = v = 0 v 2 u T v = v 1 v u 1
Inner product (dot product) v , u ∈ R m Example: u ⊥ v u T v = || u |||| v || cos( θ ) = 0 v u
System of equaBons n equaBons in m unknowns (v 1 ,…v m ): a 11 v 1 + · · · + a 1 m v m = b 1 a 21 v 1 + · · · + a 2 m v m = b 2 · · · · · · · · · a n 1 v 1 + · · · + a nm v m = b n
System of equaBons n equaBons in m unknowns (v 1 ,…v m ): a 11 v 1 + · · · + a 1 m v m = b 1 a 21 v 1 + · · · + a 2 m v m = b 2 · · · · · · · · · a n 1 v 1 + · · · + a nm v m = b n b 1 v 1 a 11 a 12 a 1 m · · · b 2 v 2 a 21 a 22 a 2 m · · · = . . · · · · · · · · · · · · . . . . b n a n 1 a n 2 a nm · · · v m (n x m) (m x 1) (n x 1) A v = b
System of equaBons: when does unique soluBon exist? n equaBons in m unknowns: generically , a unique soluBon exists when same number of constraints (n) as unknowns (m) : Thus, n=m or A is square. b 1 a 11 a 1 m v 1 · · · b 2 v 2 a 21 a 2 m · · · = . . · · · · · · · · · . . . . b m a m 1 a mm · · · v m (m x m) (m x 1) (n x 1) A v = b (m x m) (m x 1) (m x 1) m this is an algebraic view. m = Bme for some geometric insight.
Geometric view: when does a unique soluBon exist? Start with 2-dimensional problem: 2 unknowns, 2 equaBons a 11 x 1 + a 12 x 2 = b 1 equaBon of a line unknowns x 1 , x 2 a 21 x 1 + a 22 x 2 = b 2 a 21 x 1 + a 22 x 2 = b 2 x 2 a 11 x 1 + a 12 x 2 = b 1 soluBon: at intersecBon where both equaBons hold x 1
Geometric view: when does a unique soluBon exist? Start with 2-dimensional problem: 2 unknowns, 2 equaBons a 11 x 1 + a 12 x 2 = b 1 equaBon of a line unknowns x 1 , x 2 a 21 x 1 + a 22 x 2 = b 2 a 21 x 1 + a 22 x 2 = b 2 x 2 a 11 x 1 + a 12 x 2 = b 1 soluBon: at intersecBon where both equaBons hold x 1 Generically two infinite lines in 2D space intersect at a (single) locaBon thus (unique) soluBon exists.
Geometric view: when does a unique soluBon not exist? 1. Offset parallel lines: no soluBon exists x 2 a 11 x 1 + a 12 x 2 = b 1 a 21 x 1 + a 22 x 2 = b 2 b 2 /a 21 b 1 /a 11 x 1
Algebra: when does a unique soluBon not exist? 1. Offset parallel lines: no soluBon exists x 2 a 11 x 1 + a 12 x 2 = b 1 a 21 x 1 + a 22 x 2 = b 2 b 2 /a 21 b 1 /a 11 x 1 a 21 /a 22 = a 11 /a 12 equal slopes a 11 a 22 = a 12 a 21 a 11 a 22 − a 12 a 21 = 0
Algebra: when does a unique soluBon not exist? 2. Aligned parallel lines: infinitely many soluBons x 2 a 21 x 1 + a 22 x 2 = b 2 a 11 x 1 + a 12 x 2 = b 1 b 1 /a 11 x 1 b 2 /a 21 equal slopes a 11 a 22 − a 12 a 21 = 0 equal intercepts b 1 /a 11 = b 2 /a 21
Algebraic view: existence of unique soluBon in terms of coefficient matrix A � a 11 a 12 A = a 21 a 22 det( A ) ≡ a 11 a 22 − a 12 a 21 = 0 determinant: 2-dim system of equaBons with square coefficient matrix A has a unique soluBon when: det( A ) 6 = 0 Same condiBon for m -dim system of equaBons with square coefficient matrix.
Linear system: possibiliBes • 1 unique soluBon • No soluBons • Infinitely many soluBons
Recommend
More recommend