lin inear multi prover in interactive proofs
play

Lin inear Multi-Prover In Interactive Proofs Dan Boneh, Yuval - PowerPoint PPT Presentation

Quasi-Optimal SNARGs via ia Lin inear Multi-Prover In Interactive Proofs Dan Boneh, Yuval Ishai, Amit Sahai, and David J. Wu Non-Interactive Arguments for NP = , = 1 for some (, )


  1. Quasi-Optimal SNARGs via ia Lin inear Multi-Prover In Interactive Proofs Dan Boneh, Yuval Ishai, Amit Sahai, and David J. Wu

  2. Non-Interactive Arguments for NP โ„’ ๐ท = ๐‘ฆ โˆถ ๐ท ๐‘ฆ, ๐‘ฅ = 1 for some ๐‘ฅ ๐œŒ ๐‘„(๐‘ฆ, ๐‘ฅ) ๐‘Š(๐‘ฆ) accept / reject Completeness: ๐ท ๐‘ฆ, ๐‘ฅ = 1 โŸน Pr ๐‘„ ๐‘ฆ, ๐‘ฅ , ๐‘Š ๐‘ฆ = 1 = 1 Soundness: for all provers ๐‘„ โ‹† of size 2 ๐œ‡ ( ๐œ‡ is a security parameter): ๐‘ฆ โˆ‰ โ„’ ๐ท โŸน Pr ๐‘„ โ‹† ๐‘ฆ , ๐‘Š ๐‘ฆ = 1 โ‰ค 2 โˆ’๐œ‡

  3. Succinct Non-Interactive Arguments (SNARGs) โ„’ ๐ท = ๐‘ฆ โˆถ ๐ท ๐‘ฆ, ๐‘ฅ = 1 for some ๐‘ฅ ๐œŒ ๐‘„(๐‘ฆ, ๐‘ฅ) ๐‘Š(๐‘ฆ) accept / reject Argument system is succinct if: โ€ข Prover communication is poly ๐œ‡ + log ๐ท โ€ข ๐‘Š can be implemented by a circuit of size poly ๐œ‡ + ๐‘ฆ + log ๐ท Verifier complexity significantly smaller than classic NP verifier

  4. Succinct Non-Interactive Arguments (SNARGs) Instantiation: โ€œCS proofsโ€ in the random oracle model [Mic94] ๐œŒ ๐‘„(๐‘ฆ, ๐‘ฅ) ๐‘Š(๐‘ฆ) Argument consists of a single message accept / reject

  5. Succinct Non-Interactive Arguments (SNARGs) Setup 1 ๐œ‡ Can consider publicly- common reference verification verifiable and secretly- string (CRS) state verifiable SNARGs ๐œ ๐œ Preprocessing SNARGs: allow โ€œexpensiveโ€ setup ๐œŒ ๐‘„(๐œ, ๐‘ฆ, ๐‘ฅ) ๐‘Š(๐œ, ๐‘ฆ) Argument consists of a single message accept / reject

  6. Complexity Metrics for SNARGs Soundness: for all provers ๐‘„ โ‹† of size 2 ๐œ‡ : ๐‘ฆ โˆ‰ โ„’ ๐ท โŸน Pr ๐‘„ โ‹† ๐‘ฆ , ๐‘Š ๐‘ฆ = 1 โ‰ค 2 โˆ’๐œ‡ How short can the proofs be? Even in the designated- ๐œŒ = ฮฉ ๐œ‡ verifier setting [See paper for details] How much work is needed to generate the proof? ๐‘„ = ฮฉ ๐ท

  7. Quasi-Optimal SNARGs Soundness: for all provers ๐‘„ โ‹† of size 2 ๐œ‡ : ๐‘ฆ โˆ‰ โ„’ ๐ท โŸน Pr ๐‘„ โ‹† ๐‘ฆ , ๐‘Š ๐‘ฆ = 1 โ‰ค 2 โˆ’๐œ‡ A SNARG (for Boolean circuit satisfiability) is quasi-optimal if it satisfies the following properties: โ€ข Quasi-optimal succinctness: = เทจ ๐œŒ = ๐œ‡ โ‹… polylog ๐œ‡, ๐ท ๐‘ƒ(๐œ‡) โ€ข Quasi-optimal prover complexity: ๐‘„ = เทจ ๐‘ƒ ๐ท + poly(๐œ‡, log ๐ท )

  8. Quasi-Optimal SNARGs Prover Proof Construction Complexity Size Assumption เทจ เทจ ๐‘ƒ(๐œ‡ 2 ) ๐‘ƒ( ๐ท ) Random Oracle CS Proofs [Mic94] เทจ เทจ ๐‘ƒ(๐œ‡ ๐ท ) ๐‘ƒ(๐œ‡) Groth [Gro16] Generic Group ๐‘ƒ(๐œ‡ ๐ท 2 + ๐ท ๐œ‡ 2 ) เทจ เทจ Groth [Gro10] ๐‘ƒ(๐œ‡) Knowledge of Exponent เทจ เทจ GGPR [GGPR12] ๐‘ƒ(๐œ‡ ๐ท ) ๐‘ƒ(๐œ‡) เทจ เทจ BCIOP (Pairing) [BCIOP13] ๐‘ƒ(๐œ‡ ๐ท ) ๐‘ƒ(๐œ‡) Linear-Only Encryption Linear-Only เทจ เทจ BISW (LWE/RLWE) [BISW17] ๐‘ƒ(๐œ‡ ๐ท ) ๐‘ƒ(๐œ‡) Vector Encryption

  9. For simplicity, we ignore low order Quasi-Optimal SNARGs terms poly ๐œ‡, log ๐ท Prover Proof Construction Complexity Size Assumption เทจ เทจ ๐‘ƒ(๐œ‡ 2 ) ๐‘ƒ( ๐ท ) Random Oracle CS Proofs [Mic94] เทจ เทจ ๐‘ƒ(๐œ‡ ๐ท ) ๐‘ƒ(๐œ‡) Groth [Gro16] Generic Group ๐‘ƒ(๐œ‡ ๐ท 2 + ๐ท ๐œ‡ 2 ) เทจ เทจ Groth [Gro10] ๐‘ƒ(๐œ‡) Knowledge of Exponent เทจ เทจ GGPR [GGPR12] ๐‘ƒ(๐œ‡ ๐ท ) ๐‘ƒ(๐œ‡) เทจ เทจ BCIOP (Pairing) [BCIOP13] ๐‘ƒ(๐œ‡ ๐ท ) ๐‘ƒ(๐œ‡) Linear-Only Encryption Linear-Only เทจ เทจ BISW (LWE/RLWE) [BISW17] ๐‘ƒ(๐œ‡ ๐ท ) ๐‘ƒ(๐œ‡) Vector Encryption

  10. For simplicity, we ignore low order Quasi-Optimal SNARGs terms poly ๐œ‡, log ๐ท Prover Proof Construction Complexity Size Assumption เทจ เทจ ๐‘ƒ(๐œ‡ 2 ) ๐‘ƒ( ๐ท ) Random Oracle CS Proofs [Mic94] เทจ เทจ ๐‘ƒ(๐œ‡ ๐ท ) ๐‘ƒ(๐œ‡) Groth [Gro16] Generic Group ๐‘ƒ(๐œ‡ ๐ท 2 + ๐ท ๐œ‡ 2 ) เทจ เทจ Groth [Gro10] ๐‘ƒ(๐œ‡) Knowledge of Exponent เทจ เทจ GGPR [GGPR12] ๐‘ƒ(๐œ‡ ๐ท ) ๐‘ƒ(๐œ‡) เทจ เทจ BCIOP (Pairing) [BCIOP13] ๐‘ƒ(๐œ‡ ๐ท ) ๐‘ƒ(๐œ‡) Linear-Only Encryption Linear-Only เทจ เทจ BISW (LWE/RLWE) [BISW17] ๐‘ƒ(๐œ‡ ๐ท ) ๐‘ƒ(๐œ‡) Vector Encryption Linear-Only เทจ เทจ ๐‘ƒ ๐ท ๐‘ƒ(๐œ‡) This work Vector Encryption

  11. This Work New framework for building preprocessing SNARGs (following [BCIOP13, BISW17] ) Step 1 (information-theoretic): โ€ข Linear multi-prover interactive proofs (linear MIPs) โ€ข This work: first construction of a quasi-optimal linear MIP Step 2 (cryptographic): โ€ข Linear-only vector encryption to simulate linear MIP model โ€ข This work: linear MIP โŸน preprocessing SNARG Results yield the first quasi-optimal SNARG (from linear-only vector encryption over rings)

  12. Linear PCPs [IKO07] ๐‘ฆ, ๐‘ฅ PCP where the proof oracle implements a linear function ๐œŒ โˆˆ ๐”พ ๐‘› ๐œŒ โˆˆ ๐”พ ๐‘› In these instantiations, ๐‘Ÿ โˆˆ ๐”พ ๐‘› verifier is oblivious (queries independent of statement) ๐‘Ÿ, ๐œŒ โˆˆ ๐”พ Several possible instantiations: based on the Walsh-Hadamard code [ALMSS92] or quadratic span programs [GGPR13] Verifier

  13. From Linear PCPs to SNARGs [BCIOP13] Verifier encrypts its queries using a linear-only encryption scheme ๐‘… = ๐‘Ÿ 1 ๐‘Ÿ 2 ๐‘Ÿ 3 ๐‘Ÿ ๐‘™ โ‹ฏ part of the CRS

  14. From Linear PCPs to SNARGs [BCIOP13] Encryption scheme that only supports linear homomorphism Verifier encrypts its queries using a linear-only encryption scheme ๐‘… = ๐‘Ÿ 1 ๐‘Ÿ 2 ๐‘Ÿ 3 ๐‘Ÿ ๐‘™ โ‹ฏ part of the CRS

  15. From Linear PCPs to SNARGs [BCIOP13] Verifier encrypts its queries using Prover constructs linear a linear-only encryption scheme PCP ๐œŒ from (๐‘ฆ, ๐‘ฅ) ๐‘ฆ, ๐‘ฅ ๐‘… = ๐‘Ÿ 1 ๐‘Ÿ 2 ๐‘Ÿ 3 ๐‘Ÿ ๐‘™ โ‹ฏ ๐œŒ โˆˆ ๐”พ ๐‘› Prover homomorphically computes responses to linear PCP queries part of the CRS โŸจ๐œŒ, ๐‘Ÿ 1 โŸฉ โŸจ๐œŒ, ๐‘Ÿ 2 โŸฉ โ‹ฏ โŸจ๐œŒ, ๐‘Ÿ ๐‘™ โŸฉ SNARG proof

  16. From Linear PCPs to SNARGs [BCIOP13] Verifier encrypts its queries using Prover constructs linear Evaluating inner product requires a linear-only encryption scheme PCP ๐œŒ from (๐‘ฆ, ๐‘ฅ) ฮฉ ๐ท homomorphic operations; prover complexity: ๐‘ฆ, ๐‘ฅ ฮฉ ๐œ‡ โ‹… ฮฉ ๐ท = ฮฉ ๐œ‡ ๐ท ๐‘… = ๐‘Ÿ 1 ๐‘Ÿ 2 ๐‘Ÿ 3 ๐‘Ÿ ๐‘™ We pay ฮฉ(๐œ‡) for each โ‹ฏ ๐œŒ โˆˆ ๐”พ ๐‘› homomorphic operation. Can we reduce this? Prover homomorphically computes Proof consists of a constant responses to linear PCP queries number of ciphertexts: total length part of the CRS โŸจ๐œŒ, ๐‘Ÿ 1 โŸฉ โŸจ๐œŒ, ๐‘Ÿ 2 โŸฉ โ‹ฏ โŸจ๐œŒ, ๐‘Ÿ ๐‘™ โŸฉ ๐‘ƒ(๐œ‡) bits SNARG proof

  17. Linear-Only Encryption over Rings โ„“ ฮค Consider encryption scheme over a polynomial ring ๐‘† ๐‘ž = โ„ค ๐‘ž ๐‘ฆ ฮฆ โ„“ ๐‘ฆ โ‰… ๐”พ ๐‘ž โ€ฒ ๐‘ฆ 1 ๐‘ฆ 1 ๐‘ฆ 1 + ๐‘ฆ 1 โ€ฒ โ€ฒ โ€ฒ ๐‘ฆ 2 ๐‘ฆ 2 ๐‘ฆ 2 + ๐‘ฆ 2 Homomorphic operations correspond to component-wise โ€ฒ โ€ฒ ๐‘ฆ 3 ๐‘ฆ 3 ๐‘ฆ 3 + ๐‘ฆ 3 additions and scalar multiplications โ‹ฎ โ‹ฎ โ‹ฎ โ€ฒ โ€ฒ ๐‘ฆ โ„“ ๐‘ฆ โ„“ ๐‘ฆ โ„“ + ๐‘ฆ โ„“ Using RLWE-based encryption schemes, can Plaintext space can be viewed encrypt โ„“ = เทจ ๐‘ƒ(๐œ‡) field elements ( ๐‘ž = poly ๐œ‡ ) as a vector of field elements with ciphertexts of size เทจ ๐‘ƒ(๐œ‡)

  18. Linear-Only Encryption over Rings โ„“ ฮค Consider encryption scheme over a polynomial ring ๐‘† ๐‘ž = โ„ค ๐‘ž ๐‘ฆ ฮฆ โ„“ ๐‘ฆ โ‰… ๐”พ ๐‘ž โ€ฒ ๐‘ฆ 1 ๐‘ฆ 1 ๐‘ฆ 1 + ๐‘ฆ 1 โ€ฒ โ€ฒ โ€ฒ ๐‘ฆ 2 ๐‘ฆ 2 ๐‘ฆ 2 + ๐‘ฆ 2 Homomorphic operations correspond to component-wise โ€ฒ โ€ฒ ๐‘ฆ 3 ๐‘ฆ 3 ๐‘ฆ 3 + ๐‘ฆ 3 Amortized cost of homomorphic additions and scalar multiplications โ‹ฎ โ‹ฎ โ‹ฎ operation on a single field element is polylog(๐œ‡) โ€ฒ โ€ฒ ๐‘ฆ โ„“ ๐‘ฆ โ„“ ๐‘ฆ โ„“ + ๐‘ฆ โ„“ Using RLWE-based encryption schemes, can Plaintext space can be viewed encrypt โ„“ = เทจ ๐‘ƒ(๐œ‡) field elements ( ๐‘ž = poly ๐œ‡ ) as a vector of field elements with ciphertexts of size เทจ ๐‘ƒ(๐œ‡)

  19. Linear-Only Encryption over Rings ๐‘› ๐‘Ÿ 1 โˆˆ ๐”พ ๐‘ž โŸจ๐œŒ 1 , ๐‘Ÿ 1 โŸฉ ๐‘› ๐‘Ÿ 2 โˆˆ ๐”พ ๐‘ž โŸจ๐œŒ 2 , ๐‘Ÿ 2 โŸฉ ๐‘› ๐‘Ÿ 3 โˆˆ ๐”พ ๐‘ž โŸจ๐œŒ 3 , ๐‘Ÿ 3 โŸฉ โ‹ฎ โ‹ฎ ๐‘› ๐‘Ÿ โ„“ โˆˆ ๐”พ ๐‘ž โŸจ๐œŒ โ„“ , ๐‘Ÿ โ„“ โŸฉ Given encrypted set of query vectors, prover can homomorphically apply independent linear functions to each slot

  20. Linear Multi-Prover Interactive Proofs (MIPs) ๐‘ฆ, ๐‘ฅ ๐œŒ 1 ๐œŒ 2 โ‹ฏ ๐œŒ โ„“ Verifier has oracle access to multiple linear proof oracles [Proofs may be correlated] Can convert linear MIP to preprocessing SNARG using linear- only (vector) encryption over rings

  21. Linear Multi-Prover Interactive Proofs (MIPs) ๐‘ฆ, ๐‘ฅ ๐œŒ 1 ๐œŒ 2 โ‹ฏ ๐œŒ โ„“ Suppose โ€ข Number of provers โ„“ = เทจ ๐‘ƒ ๐œ‡ ๐‘› where ๐‘› = โ€ข Proofs ๐œŒ 1 , โ€ฆ , ๐œŒ โ„“ โˆˆ ๐”พ ๐‘ž ฮค ๐ท โ„“ โ€ข Number of queries to each ๐œŒ ๐‘— is polylog(๐œ‡) Then, linear MIP is quasi-optimal

  22. Linear Multi-Prover Interactive Proofs (MIPs) ๐‘ฆ, ๐‘ฅ Prover complexity: ๐‘ƒ โ„“๐‘› = เทจ เทจ ๐‘ƒ ๐ท ๐œŒ 1 ๐œŒ 2 โ‹ฏ ๐œŒ โ„“ Linear MIP size: = เทจ ๐‘ƒ โ„“ โ‹… polylog ๐œ‡ ๐‘ƒ(๐œ‡) Suppose โ€ข Number of provers โ„“ = เทจ ๐‘ƒ ๐œ‡ ๐‘› where ๐‘› = โ€ข Proofs ๐œŒ 1 , โ€ฆ , ๐œŒ โ„“ โˆˆ ๐”พ ๐‘ž ฮค ๐ท โ„“ โ€ข Number of queries to each ๐œŒ ๐‘— is polylog(๐œ‡) Then, linear MIP is quasi-optimal

  23. Quasi-Optimal Linear MIPs This work: Construction of a quasi-optimal linear MIP for Boolean circuit satisfiability Robust Consistency Quasi-Optimal Decomposition Check Linear MIP

Recommend


More recommend