ze zero kn knowledge pr proofs on on se secr cret sh
play

Ze Zero-Kn Knowledge Pr Proofs on on Se Secr cret-Sh Shared - PowerPoint PPT Presentation

Ze Zero-Kn Knowledge Pr Proofs on on Se Secr cret-Sh Shared Data ta via via Fully Lin inear ear PCPs PCPs Dan Boneh Elette Boyle Henry Corrigan-Gibbs Niv Gilboa Yuval Ishai Ben-Gurion Stanford IDC Herzliya Stanford Technion


  1. Ze Zero-Kn Knowledge Pr Proofs on on Se Secr cret-Sh Shared Data ta via via Fully Lin inear ear PCPs PCPs Dan Boneh Elette Boyle Henry Corrigan-Gibbs Niv Gilboa Yuval Ishai Ben-Gurion Stanford IDC Herzliya Stanford Technion University

  2. Rev Review ew Zero-knowledge proofs [GMR89] Prover 𝑄 Verifier π‘Š 3-coloring of 𝐻 𝐻 mplete. Honest 𝑄 convinces honest π‘Š . Co Compl Dishonest 𝑄 βˆ— rarely fools honest π‘Š . So Sound. Dishonest π‘Š βˆ— learns only that 𝐻 ∈ 3COL . ZK. ZK Γ  π‘Š βˆ— le lse about 𝐻 learns ns no nothing hing els 36

  3. Rev Review ew Zero-knowledge proofs [GMR89] Prover 𝑄 Verifier π‘Š 3-coloring of 𝐻 𝐻 β€œ 𝐻 is 3-colorable” mplete. Honest 𝑄 convinces honest π‘Š . Co Compl Dishonest 𝑄 βˆ— rarely fools honest π‘Š . Sound. So Dishonest π‘Š βˆ— learns only that 𝐻 ∈ 3COL . ZK ZK. Γ  π‘Š βˆ— le lse about 𝐻 learns ns no nothing hing els 37

  4. Rev Review ew Zero-knowledge proofs [GMR89] Prover 𝑄 Verifier π‘Š 3-coloring of 𝐻 𝐻 β€œ 𝐻 is 3-colorable” mplete. Honest 𝑄 convinces honest π‘Š . Co Compl Dishonest 𝑄 βˆ— rarely fools honest π‘Š . Sound. So Dishonest π‘Š βˆ— learns only that 𝐻 ∈ 3COL . ZK ZK. Γ  π‘Š βˆ— le lse about 𝐻 learns ns no nothing hing els 38

  5. Th This is pa pape per Zero-knowledge proofs on di distribu buted data Verifier π‘Š * 𝐻 * Prover 𝑄 Verifier π‘Š 3-coloring , of 𝐻 * + 𝐻 , 𝐻 , mplete. Honest 𝑄 convinces honest π‘Š * , π‘Š Compl Co , . Dishonest 𝑄 βˆ— rarely fools honest (π‘Š * , π‘Š , ) . So Sound. βˆ— (or π‘Š βˆ— ) learns only that 𝐻 * + 𝐻 , ∈ 3COL . ZK. Dishonest π‘Š Strong ZK Str * , Γ  π‘Š lse about 𝐻 , * le learns ns no nothing hing els 39

  6. This Th is pa pape per Zero-knowledge proofs on di distribu buted data Verifier π‘Š * 𝐻 * Prover 𝑄 Verifier π‘Š 3-coloring , of 𝐻 * + 𝐻 , β€œ 𝐻 * + 𝐻 , is 3-colorable” 𝐻 , mplete. Honest 𝑄 convinces honest π‘Š * , π‘Š Compl Co , . Dishonest 𝑄 βˆ— rarely fools honest (π‘Š * , π‘Š , ) . So Sound. βˆ— (or π‘Š βˆ— ) learns only that 𝐻 * + 𝐻 , ∈ 3COL . ZK. Dishonest π‘Š Strong ZK Str * , Γ  π‘Š lse about 𝐻 , * le learns ns no nothing hing els 40

  7. This Th is pa pape per Zero-knowledge proofs on di distribu buted data Verifier π‘Š * 𝐻 * Prover 𝑄 Verifier π‘Š 3-coloring , of 𝐻 * + 𝐻 , β€œ 𝐻 * + 𝐻 , is 3-colorable” 𝐻 , mplete. Honest 𝑄 convinces honest π‘Š * , π‘Š Compl Co , . Dishonest 𝑄 βˆ— rarely fools honest (π‘Š * , π‘Š , ) . So Sound. βˆ— (or π‘Š βˆ— ) learns only that 𝐻 * + 𝐻 , ∈ 3COL . ZK. Dishonest π‘Š Strong ZK Str * , Γ  π‘Š lse about 𝐻 , * le learns ns no nothing hing els 41

  8. This Th is pa pape per Zero-knowledge proofs on di distribu buted data Verifier π‘Š * 𝐻 * Prover 𝑄 Verifier π‘Š 3-coloring , of 𝐻 * + 𝐻 , β€œ 𝐻 * + 𝐻 , is 3-colorable” 𝐻 , 𝒍 -ro rotocol = As in other multiparty protocols roun und p d pro oin = Verifiers’ messages to prover are random strings Publ Public ic coin More Mo re t than t two ve verif rifie iers rs 42

  9. Specia Sp ial case Zero-knowledge proofs on sec secret et-sh shared ed data Language β„’ βŠ† 𝔾 5 , for finite field 𝔾 . 𝑦 * ∈ 𝔾 5 Verifier π‘Š * 𝑦 ∈ 𝔾 5 Prover for 𝑦 = 𝑦 * + 𝑦 , 𝑦 , ∈ 𝔾 5 Verifier π‘Š , β€œ 𝑦 * + 𝑦 , ∈ β„’ ” 43

  10. ZK proofs on distributed data Applications and prior implicit constructions Com Communic ication ion Cos Cost ge β„’ La Langu guage Applic Ap icat ation ion Pr Prior This wor Th ork PIR writing, Weight-one Ξ©(π‘œ) 𝑃(1) private messaging vectors in 𝔾 5 [OS97], [BGI16], Riposte, … 0,1 5 βŠ† 𝔾 5 Private statistics, Ξ©(π‘œ) 𝑃(log π‘œ) private ad targeting for large 𝔾 Adnostic, Adscale, Prio, … Also: New application to malicious-secure MPC. Al 44

  11. ZK proofs on distributed data Applications and prior implicit constructions Com Communic ication ion Cos Cost ge β„’ La Langu guage Applic Ap icat ation ion Prior Pr This wor Th ork Used in the PIR writing, Firefox Weight-one Ξ©(π‘œ) 𝑃(1) private messaging vectors in 𝔾 5 browser [OS97], [BGI16], Riposte, … 0,1 5 βŠ† 𝔾 5 Private statistics, Ξ©(π‘œ) 𝑃(log π‘œ) private ad targeting for large 𝔾 Adnostic, Adscale, Prio, … Also: New application to malicious-secure MPC. Al 45

  12. ZK proofs on distributed data Applications and prior implicit constructions Com Communic ication ion Cos Cost ge β„’ La Langu guage Applic Ap icat ation ion Pr Prior This wor Th ork PIR writing, Weight-one Ξ©(π‘œ) 𝑃(1) private messaging vectors in 𝔾 5 [OS97], [BGI16], Riposte, … 0,1 5 βŠ† 𝔾 5 Private statistics, Ξ©(π‘œ) 𝑃(log π‘œ) private ad targeting for large 𝔾 Adnostic, Adscale, Prio, … Also: New application to malicious-secure MPC. Al 46

  13. Selected results: New ZK proofs Let 𝔾 be a finite field. Let β„’ βŠ† 𝔾 5 be a language. ( π‘œ β‰ͺ 𝔾 ) m. If β„’ is recognized by circuits of size |𝓓| , there is a Th Theorem. public-coin ZK proof on distributed data for β„’ with: 𝑃(1) rounds and β€’ communication cost 𝑷(|𝓓|) . (elements of 𝔾 ) β€’ m. If β„’ has a de two arithmetic circuit, there is a Th Theorem. degre gree-tw public-coin ZK proof on distributed data for β„’ with: 𝑃(log π‘œ) rounds and β€’ communication cost 𝑷(𝐦𝐩𝐑 𝒐) . (Improves: Ξ©(π‘œ) [BC17]) β€’ 47

  14. Selected results: New ZK proofs Let 𝔾 be a finite field. Let β„’ βŠ† 𝔾 5 be a language. ( π‘œ β‰ͺ 𝔾 ) m. If β„’ is recognized by circuits of size |𝓓| , there is a Th Theorem. public-coin ZK proof on distributed data for β„’ with: 𝑃(1) rounds and β€’ communication cost 𝑷(|𝓓|) . (elements of 𝔾 ) β€’ m. If β„’ has a de two arithmetic circuit, there is a Theorem. Th degre gree-tw β€’ Generalizes special-purpose schemes. [CB17] public-coin ZK proof on distributed data for β„’ with: 𝑃(log π‘œ) rounds and β€’ Non-trivial extension to setting in which β€’ communication cost 𝑷(𝐦𝐩𝐑 𝒐) . (Improves: Ξ©(π‘œ) [BC17]) β€’ prover and some verifiers collude. 48

  15. Selected results: New ZK proofs Let 𝔾 be a finite field. Let β„’ βŠ† 𝔾 5 be a language. ( π‘œ β‰ͺ 𝔾 ) m. If β„’ is recognized by circuits of size |𝓓| , there is a Th Theorem. public-coin ZK proof on distributed data for β„’ with: 𝑃(1) rounds and β€’ communication cost 𝑷(|𝓓|) . (elements of 𝔾 ) β€’ m. If β„’ has a de two arithmetic circuit, there is a Th Theorem. degre gree-tw public-coin ZK proof on distributed data for β„’ with: 𝑃(log π‘œ) rounds and β€’ communication cost 𝑷(𝐦𝐩𝐑 𝒐) . (Improves: Ξ©(π‘œ) [BC17]) β€’ 49

  16. Selected results: New ZK proofs Let 𝔾 be a finite field. Let β„’ βŠ† 𝔾 5 be a language. ( π‘œ β‰ͺ 𝔾 ) m. If β„’ is recognized by circuits of size |𝓓| , there is a Th Theorem. public-coin ZK proof on distributed data for β„’ with: 𝑃(1) rounds and β€’ communication cost 𝑷(|𝓓|) . (elements of 𝔾 ) β€’ m. If β„’ has a de two arithmetic circuit, there is a Th Theorem. degre gree-tw public-coin ZK proof on distributed data for β„’ with: 𝑃(log π‘œ) rounds and β€’ communication cost 𝑷(𝐦𝐩𝐑 𝒐) . (Improves: Ξ©(π‘œ) [BC17]) β€’ 50

  17. Selected results: New ZK proofs Let 𝔾 be a finite field. Let β„’ βŠ† 𝔾 5 be a language. ( π‘œ β‰ͺ 𝔾 ) m. If β„’ is recognized by circuits of size |𝓓| , there is a Th Theorem. public-coin ZK proof on distributed data for β„’ with: 𝑃(1) rounds and β€’ communication cost 𝑷(|𝓓|) . (elements of 𝔾 ) β€’ m. If β„’ has a de two arithmetic circuit, there is a Theorem. Th degre gree-tw public-coin ZK proof on distributed data for β„’ with: 𝑃(log π‘œ) rounds and 𝒍 β€’ 𝒐 𝑷 𝟐/𝒍 communication cost 𝑷(𝐦𝐩𝐑 𝒐) . (Improves: Ξ©(π‘œ) [BC17]) β€’ 51

  18. Selected results: New ZK proofs Let 𝔾 be a finite field. Let β„’ βŠ† 𝔾 5 be a language. ( π‘œ β‰ͺ 𝔾 ) m. If β„’ is recognized by circuits of size |𝓓| , there is a Th Theorem. Our proofs apply to a much larger class public-coin ZK proof on distributed data for β„’ with: of β€œstructured” languages (see paper) 𝑃(1) rounds and β€’ Circuits with degree 𝑃(1) or repetition or … β€’ communication cost 𝑷(|𝓓|) . (elements of 𝔾 ) β€’ m. If β„’ has a de two arithmetic circuit, there is a Th Theorem. degre gree-tw public-coin ZK proof on distributed data for β„’ with: 𝑃(log π‘œ) rounds and 𝒍 β€’ 𝒐 𝑷 𝟐/𝒍 communication cost 𝑷(𝐦𝐩𝐑 𝒐) . (Improves: Ξ©(π‘œ) [BC17]) β€’ 52

  19. Th This s talk β€’ ZK ZK proofs on distr tribute ted data ata β€’ Fully linear PCPs β€’ Application: Three-party computation 53

  20. Th This s talk β€’ ZK proofs on distributed data β€’ Ful Fully linea inear r PCPs β€’ Application: Three-party computation 54

  21. Constructing ZK proofs on distributed data Ste Step 1. 1. Define β€œfully linear PCPs” β€’ A strengthening of linear PCPs [IKO07] β€’ We then show: Efficient fully Efficient ZK proof on implies linear PCP for β„’ distributed data for β„’ Ste Step 2 2. Construct new fully linear PCPs 55

Recommend


More recommend