Learning Symbolic Automata Symbolic Learning Conclusion Observation Table - T = (Σ , S, R, E, f ) ǫ a • Σ = { a, b } ǫ − + a + + • S ⊆ Σ ∗ prefixes b − − − − • R = S · Σ \ S boundary ba + + aa • E ⊆ Σ ∗ suffixes ab + + − − bb • f : S ∪ R × E → { + , −} classification baa − − function − − bab
Learning Symbolic Automata Symbolic Learning Conclusion Observation Table - T = (Σ , S, R, E, f ) ǫ a • Σ = { a, b } ǫ − + a + + • S ⊆ Σ ∗ prefixes b − − − − • R = S · Σ \ S boundary ba + + aa • E ⊆ Σ ∗ suffixes ab + + − − bb • f : S ∪ R × E → { + , −} classification baa − − function − − bab • f s : E → { + , −} for all s ∈ S ∪ R f s ( e ) = f ( s · e )
Learning Symbolic Automata Symbolic Learning Conclusion Observation Table - T = (Σ , S, R, E, f ) ǫ a • Σ = { a, b } ǫ − + a + + • S ⊆ Σ ∗ prefixes b − − − − • R = S · Σ \ S boundary ba + + aa • E ⊆ Σ ∗ suffixes ab + + − − bb • f : S ∪ R × E → { + , −} classification baa − − function − − bab • f s : E → { + , −} for all s ∈ S ∪ R f s ( e ) = f ( s · e )
Learning Symbolic Automata Symbolic Learning Conclusion Observation Table - T = (Σ , S, R, E, f ) ǫ a • Σ = { a, b } ǫ − + a + + • S ⊆ Σ ∗ prefixes b − − − − • R = S · Σ \ S boundary ba + + aa • E ⊆ Σ ∗ suffixes ab + + − − bb • f : S ∪ R × E → { + , −} classification baa − − function − − bab • f s : E → { + , −} for all s ∈ S ∪ R f s ( e ) = f ( s · e )
Learning Symbolic Automata Symbolic Learning Conclusion Observation Table - T = (Σ , S, R, E, f ) ǫ a • Σ = { a, b } ǫ − + a + + • S ⊆ Σ ∗ prefixes b − − − − • R = S · Σ \ S boundary ba + + aa • E ⊆ Σ ∗ suffixes ab + + − − bb • f : S ∪ R × E → { + , −} classification baa − − function − − bab • f s : E → { + , −} for all s ∈ S ∪ R f s ( e ) = f ( s · e )
Learning Symbolic Automata Symbolic Learning Conclusion Observation Table - T = (Σ , S, R, E, f ) ǫ a ǫ − + a + + b − − − − ba + + aa ab + + − − bb baa − − − − bab
Learning Symbolic Automata Symbolic Learning Conclusion Observation Table - T = (Σ , S, R, E, f ) ǫ a q 1 ǫ − + a + + b − − q 0 − − ba + + aa q 2 ab + + − − bb baa − − − − bab
Learning Symbolic Automata Symbolic Learning Conclusion Observation Table - T = (Σ , S, R, E, f ) ǫ a q 1 ǫ − + a a + + b − − q 0 − − ba b + + aa q 2 ab + + − − bb baa − − − − bab
Learning Symbolic Automata Symbolic Learning Conclusion Observation Table - T = (Σ , S, R, E, f ) ǫ a a, b q 1 ǫ − + a a + + b − − q 0 − − ba b + + aa q 2 ab + + − − bb baa − − − − bab
Learning Symbolic Automata Symbolic Learning Conclusion Observation Table - T = (Σ , S, R, E, f ) ǫ a a, b q 1 ǫ − + a a + + b − − q 0 − − ba b + + aa a, b q 2 ab + + − − bb baa − − − − bab
Learning Symbolic Automata Symbolic Learning Conclusion Observation Table - T = (Σ , S, R, E, f ) a, b q 1 ǫ a a ǫ − + q 0 b a + + q 2 a, b b − − − − ba + + aa ab + + − − bb baa − − − − bab
Learning Symbolic Automata Symbolic Learning Conclusion Observation Table - T = (Σ , S, R, E, f ) a, b q 1 ǫ a a ǫ − + q 0 • S ∪ R is prefix-closed b a + + q 2 a, b b − − − − ba + + aa ab + + − − bb baa − − − − bab
Learning Symbolic Automata Symbolic Learning Conclusion Observation Table - T = (Σ , S, R, E, f ) a, b q 1 ǫ a a ǫ − + q 0 • S ∪ R is prefix-closed b a + + q 2 a, b b − − • E is suffix-closed − − ba + + aa ab + + − − bb baa − − − − bab
Learning Symbolic Automata Symbolic Learning Conclusion Observation Table - T = (Σ , S, R, E, f ) a, b q 1 ǫ a a ǫ − + q 0 • S ∪ R is prefix-closed b a + + q 2 a, b b − − • E is suffix-closed − − ba + + aa ab + + • T closed − − bb ∀ r ∈ R , ∃ s ∈ S, f r = f s baa − − − − bab
Learning Symbolic Automata Symbolic Learning Conclusion Observation Table - T = (Σ , S, R, E, f ) a, b q 1 ǫ a a ǫ − + q 0 • S ∪ R is prefix-closed b a + + q 2 a, b b − − • E is suffix-closed − − ba + + aa ab + + • T closed − − bb ∀ r ∈ R , ∃ s ∈ S, f r = f s baa − − + − bab
Learning Symbolic Automata Symbolic Learning Conclusion Observation Table - T = (Σ , S, R, E, f ) a, b q 1 ǫ a a ǫ − + q 0 q 3 • S ∪ R is prefix-closed b b a + + q 2 a, b b − − • E is suffix-closed − − ba bab + − aa + + • T closed + + ab ∀ r ∈ R , ∃ s ∈ S, f r = f s bb − − − − baa : : :
Learning Symbolic Automata Symbolic Learning Conclusion Observation Table - T = (Σ , S, R, E, f ) a, b q 1 ǫ a a ǫ − + q 0 q 3 • S ∪ R is prefix-closed b b a + + q 2 a, b b − − • E is suffix-closed − − ba bab + − aa + + • T closed + + ab ∀ r ∈ R , ∃ s ∈ S, f r = f s bb − − • T consistent − − baa ∀ s, s ′ ∈ S, ∀ a ∈ Σ, f s = f s ′ ⇒ f s · a = f s ′ · a : : :
Learning Symbolic Automata Symbolic Learning Conclusion Observation Table - T = (Σ , S, R, E, f ) a, b q 1 ǫ a a ǫ − + q 0 q 3 • S ∪ R is prefix-closed b b a + + q 2 a, b b − − • E is suffix-closed − − ba bab + − aa + + • T closed + + ab ∀ r ∈ R , ∃ s ∈ S, f r = f s bb − − • T consistent − − baa ∀ s, s ′ ∈ S, ∀ a ∈ Σ, f s = f s ′ ⇒ f s · a = f s ′ · a : : :
Learning Symbolic Automata Symbolic Learning Conclusion Observation Table - T = (Σ , S, R, E, f ) a, b q 1 ǫ a a ǫ − + q 0 q 3 • S ∪ R is prefix-closed b b a + + q 2 a, b b − − • E is suffix-closed − − ba bab + − aa + + • T closed + + ab ∀ r ∈ R , ∃ s ∈ S, f r = f s bb − − • T consistent − − baa ∀ s, s ′ ∈ S, ∀ a ∈ Σ, f s = f s ′ ⇒ f s · a = f s ′ · a : : :
Learning Symbolic Automata Symbolic Learning Conclusion Observation Table - T = (Σ , S, R, E, f ) a, b q 1 ǫ a b a ǫ − + q 0 q 3 • S ∪ R is prefix-closed b b a + + q 2 a, b b − − • E is suffix-closed − − ba bab + − aa + + • T closed + + ab ∀ r ∈ R , ∃ s ∈ S, f r = f s bb − − • T consistent − − baa ∀ s, s ′ ∈ S, ∀ a ∈ Σ, f s = f s ′ ⇒ f s · a = f s ′ · a : : :
Learning Symbolic Automata Symbolic Learning Conclusion Observation Table - T = (Σ , S, R, E, f ) a, b q 1 ǫ a b a a, b ǫ − + : q 0 q 4 ? • S ∪ R is prefix-closed a + + : b b q 2 q 3 b − − − a • E is suffix-closed − − + ba a b bab + − : aa + + : • T closed + + : ab ∀ r ∈ R , ∃ s ∈ S, f r = f s bb − − : • T consistent − − : baa ∀ s, s ′ ∈ S, ∀ a ∈ Σ, f s = f s ′ ⇒ f s · a = f s ′ · a : : : :
Learning Symbolic Automata Symbolic Learning Conclusion L ∗ Example (Σ = { a, b } )
Learning Symbolic Automata Symbolic Learning Conclusion L ∗ Example (Σ = { a, b } ) observation table hypothesis automaton ǫ a, b q 0 ? ǫ − a b
Learning Symbolic Automata Symbolic Learning Conclusion L ∗ Example (Σ = { a, b } ) observation table hypothesis automaton ǫ a, b q 0 ? ǫ − a + − b
Learning Symbolic Automata Symbolic Learning Conclusion L ∗ Example (Σ = { a, b } ) observation table hypothesis automaton ǫ a, b q 0 ? ǫ − a + − b
Learning Symbolic Automata Symbolic Learning Conclusion L ∗ Example (Σ = { a, b } ) observation table hypothesis automaton ǫ a a, b q 0 q 1 ? ǫ − + a b − b
Learning Symbolic Automata Symbolic Learning Conclusion L ∗ Example (Σ = { a, b } ) observation table hypothesis automaton ǫ a a, b q 0 q 1 ? ǫ − + a b − b aa ab
Learning Symbolic Automata Symbolic Learning Conclusion L ∗ Example (Σ = { a, b } ) observation table hypothesis automaton ǫ a a, b q 0 q 1 ? ǫ − + a b − b aa − + ab
Learning Symbolic Automata Symbolic Learning Conclusion L ∗ Example (Σ = { a, b } ) observation table hypothesis automaton ǫ a a, b q 0 q 1 ? ǫ − + a b − b aa − + ab
Learning Symbolic Automata Symbolic Learning Conclusion L ∗ Example (Σ = { a, b } ) observation table hypothesis automaton ǫ a q 0 q 1 b ǫ − a + a b − b aa − + ab
Learning Symbolic Automata Symbolic Learning Conclusion L ∗ Example (Σ = { a, b } ) observation table hypothesis automaton ǫ a q 0 q 1 b ǫ − a + a b Ask Equivalence Query: − b counterexample: − ba aa − + ab
Learning Symbolic Automata Symbolic Learning Conclusion L ∗ Example (Σ = { a, b } ) observation table hypothesis automaton ǫ a q 0 q 1 b ǫ − a + a b ba − counterexample: − ba b − − aa ab +
Learning Symbolic Automata Symbolic Learning Conclusion L ∗ Example (Σ = { a, b } ) observation table hypothesis automaton ǫ a q 0 q 1 b ǫ − a + a b b − − ba counterexample: − ba − aa ab +
Learning Symbolic Automata Symbolic Learning Conclusion L ∗ Example (Σ = { a, b } ) observation table hypothesis automaton ǫ a q 0 q 1 b ǫ − a + a b b − − ba − aa ab + bb baa bab
Learning Symbolic Automata Symbolic Learning Conclusion L ∗ Example (Σ = { a, b } ) observation table hypothesis automaton ǫ a q 0 q 1 b ǫ − a + a b b − − ba − aa ab + bb + baa − bab +
Learning Symbolic Automata Symbolic Learning Conclusion L ∗ Example (Σ = { a, b } ) observation table hypothesis automaton ǫ a q 0 q 1 b ǫ − a + a b b − Table is not consistent! − ba − aa ab + bb + baa − bab +
Learning Symbolic Automata Symbolic Learning Conclusion L ∗ Example (Σ = { a, b } ) observation table hypothesis automaton ǫ a q 0 q 1 b ǫ − a + a b b − Table is not consistent! − b a − aa ab + bb + baa − bab +
Learning Symbolic Automata Symbolic Learning Conclusion L ∗ Example (Σ = { a, b } ) observation table hypothesis automaton ǫ a a q 0 q 1 b ǫ − a + a b b − Table is not consistent! − b a − aa ab + bb + baa − bab +
Learning Symbolic Automata Symbolic Learning Conclusion L ∗ Example (Σ = { a, b } ) observation table hypothesis automaton ǫ a a b q 0 q 1 ǫ − + + − b a b a b − − q 2 − − b a − aa ab + bb + baa − bab +
Learning Symbolic Automata Symbolic Learning Conclusion L ∗ Example (Σ = { a, b } ) observation table hypothesis automaton ǫ a a b q 0 q 1 ǫ − + + − b a b a b − − q 2 − − b a − + aa ab + − bb + − baa − − bab + −
Learning Symbolic Automata Symbolic Learning Conclusion L ∗ Example (Σ = { a, b } ) observation table hypothesis automaton ǫ a a b q 0 q 1 ǫ − + a + − b a b a b − − q 2 − − ba − + aa ab + − bb + − baa − − bab + −
Learning Symbolic Automata Symbolic Learning Conclusion L ∗ Example (Σ = { a, b } ) observation table hypothesis automaton ǫ a a b q 0 q 1 ǫ − + a + − b a b a b − − q 2 − − ba Ask Equivalence Query: − + aa True ab + − bb + − baa − − bab + −
Learning Symbolic Automata Symbolic Learning Conclusion Outline Learning Regular Languages Learning regular languages L* Algorithm Queries Observation tables Symbolic Automata Symbolic automata Symbolic languages Symbolic Learning Evidences Symbolic Algorithm Example
Learning Symbolic Automata Symbolic Learning Conclusion Deterministic Symbolic Automaton Σ = [1 , 100] ⊆ N [1] [1 , 50] , [71 , 100] q 1 q 3 [73 , 100] [1 , 50] [51 , 70] q 0 [2 , 72] [51 , 100] [21 , 100] [1 , 20] q 2 q 4 Σ
Learning Symbolic Automata Symbolic Learning Conclusion Deterministic Symbolic Automaton Σ = [1 , 100] ⊆ N [1] [1 , 50] , [71 , 100] q 1 q 3 [73 , 100] [1 , 50] [51 , 70] q 0 [2 , 72] [51 , 100] [21 , 100] [1 , 20] q 2 q 4 Σ
Learning Symbolic Automata Symbolic Learning Conclusion Deterministic Symbolic Automaton Σ = [1 , 100] ⊆ N [1] [1 , 50] , [71 , 100] q 1 q 3 [73 , 100] [1 , 50] [51 , 70] q 0 [2 , 72] [51 , 100] [21 , 100] [1 , 20] q 2 q 4 Σ
Learning Symbolic Automata Symbolic Learning Conclusion Deterministic Symbolic Automaton Σ = [1 , 100] ⊆ N [1] [1 , 50] , [71 , 100] q 1 q 3 [73 , 100] [1 , 50] [51 , 70] q 0 [2 , 72] [51 , 100] [21 , 100] [1 , 20] q 2 q 4 Σ
Learning Symbolic Automata Symbolic Learning Conclusion Deterministic Symbolic Automaton Σ = [1 , 100] ⊆ N [1] [1 , 50] , [71 , 100] q 1 q 3 [73 , 100] [1 , 50] [51 , 70] q 0 [2 , 72] [51 , 100] [21 , 100] [1 , 20] q 2 q 4 Σ
Learning Symbolic Automata Symbolic Learning Conclusion Deterministic Symbolic Automaton Σ = [1 , 100] ⊆ N [1] [1 , 50] , [71 , 100] q 1 q 3 [73 , 100] [1 , 50] [51 , 70] q 0 [2 , 72] [51 , 100] [21 , 100] [1 , 20] q 2 q 4 Σ
Learning Symbolic Automata Symbolic Learning Conclusion Deterministic Symbolic Automaton Σ = [1 , 100] ⊆ N a 01 = [1 , 50] a 02 = [51 , 100] a 11 [1] [1 , 50] , [71 , 100] a 11 = . . . a 31 , a 33 q 1 q 3 . . . [73 , 100] a 13 a 01 [1 , 50] a 12 [51 , 70] a 32 q 0 [2 , 72] [51 , 100] a 02 a 21 a 22 [21 , 100] [1 , 20] q 2 q 4 a 41 Σ
Learning Symbolic Automata Symbolic Learning Conclusion Deterministic Symbolic Automaton Σ = [1 , 100] ⊆ N a 01 = [1 , 50] a 02 = [51 , 100] a 11 [1] [1 , 50] , [71 , 100] a 11 = . . . a 31 , a 33 q 1 q 3 . . . [73 , 100] a 13 a 01 Σ = { a 01 , a 02 , . . . } [1 , 50] a 12 [51 , 70] a 32 q 0 [2 , 72] [51 , 100] a 02 a 21 a 22 [21 , 100] [1 , 20] q 2 q 4 a 41 Σ
Learning Symbolic Automata Symbolic Learning Conclusion Deterministic Symbolic Automaton Σ = [1 , 100] ⊆ N a 01 = [1 , 50] a 02 = [51 , 100] a 11 [1] [1 , 50] , [71 , 100] a 11 = . . . a 31 , a 33 q 1 q 3 . . . [73 , 100] a 13 a 01 Σ = { a 01 , a 02 , . . . } [1 , 50] Σ q 0 = { a 01 , a 02 } a 12 [51 , 70] a 32 q 0 Σ q 1 = { a 11 , a 12 , a 13 } [2 , 72] . . . [51 , 100] a 02 a 21 a 22 [21 , 100] [1 , 20] q 2 q 4 a 41 Σ
Learning Symbolic Automata Symbolic Learning Conclusion Deterministic Symbolic Automaton Σ = [1 , 100] ⊆ N a 01 = [1 , 50] a 02 = [51 , 100] a 11 [1] [1 , 50] , [71 , 100] a 11 = . . . a 31 , a 33 q 1 q 3 . . . [73 , 100] a 13 a 01 Σ = { a 01 , a 02 , . . . } [1 , 50] Σ q 0 = { a 01 , a 02 } a 12 [51 , 70] a 32 q 0 Σ q 1 = { a 11 , a 12 , a 13 } [2 , 72] . . . [51 , 100] a 02 � a = Σ a 21 a 22 [21 , 100] [1 , 20] a ∈ Σ q q 2 q 4 a 41 Σ
Learning Symbolic Automata Symbolic Learning Conclusion Deterministic Symbolic Automaton Σ = [1 , 100] ⊆ N a 01 = [1 , 50] a 02 = [51 , 100] a 11 [1] [1 , 50] , [71 , 100] a 11 = . . . a 31 , a 33 q 1 q 3 . . . [73 , 100] a 13 a 01 Σ = { a 01 , a 02 , . . . } [1 , 50] Σ q 0 = { a 01 , a 02 } a 12 [51 , 70] a 32 q 0 Σ q 1 = { a 11 , a 12 , a 13 } [2 , 72] . . . [51 , 100] a 02 � a = Σ a 21 a 22 [21 , 100] [1 , 20] a ∈ Σ q q 2 q 4 ψ q : Σ → Σ q , ∀ q ∈ Q a 41 Σ
Learning Symbolic Automata Symbolic Learning Conclusion Deterministic Symbolic Automaton Σ = [1 , 100] ⊆ N a 01 = [1 , 50] a 02 = [51 , 100] a 11 [1] [1 , 50] , [71 , 100] a 11 = . . . a 31 , a 33 q 1 q 3 . . . [73 , 100] a 13 a 01 Σ = { a 01 , a 02 , . . . } [1 , 50] Σ q 0 = { a 01 , a 02 } a 12 [51 , 70] a 32 q 0 Σ q 1 = { a 11 , a 12 , a 13 } [2 , 72] . . . [51 , 100] a 02 � a = Σ a 21 a 22 [21 , 100] [1 , 20] a ∈ Σ q q 2 q 4 ψ q : Σ → Σ q , ∀ q ∈ Q a 41 Σ ψ q 1 (10) = a 12
Learning Symbolic Automata Symbolic Learning Conclusion Deterministic Symbolic Automaton Σ = [1 , 100] ⊆ N a 01 = [1 , 50] a 02 = [51 , 100] a 11 [1] [1 , 50] , [71 , 100] a 11 = . . . a 31 , a 33 q 1 q 3 . . . [73 , 100] a 13 a 01 Σ = { a 01 , a 02 , . . . } [1 , 50] Σ q 0 = { a 01 , a 02 } a 12 [51 , 70] a 32 q 0 Σ q 1 = { a 11 , a 12 , a 13 } [2 , 72] . . . [51 , 100] a 02 � a = Σ a 21 a 22 [21 , 100] [1 , 20] a ∈ Σ q q 2 q 4 ψ q : Σ → Σ q , ∀ q ∈ Q a 41 Σ ψ q 1 (10) = a 12 δ : Q × Σ → Q
Learning Symbolic Automata Symbolic Learning Conclusion Deterministic Symbolic Automaton Σ = [1 , 100] ⊆ N a 01 = [1 , 50] a 02 = [51 , 100] a 11 [1] [1 , 50] , [71 , 100] a 11 = . . . a 31 , a 33 q 1 q 3 . . . [73 , 100] a 13 a 01 Σ = { a 01 , a 02 , . . . } [1 , 50] Σ q 0 = { a 01 , a 02 } a 12 [51 , 70] a 32 q 0 Σ q 1 = { a 11 , a 12 , a 13 } [2 , 72] . . . [51 , 100] a 02 � a = Σ a 21 a 22 [21 , 100] [1 , 20] a ∈ Σ q q 2 q 4 ψ q : Σ → Σ q , ∀ q ∈ Q a 41 Σ ψ q 1 (10) = a 12 δ : Q × Σ → Q δ ( q, a ) = q ′ iff δ ( q, a ) = q ′ , a ∈ a
Learning Symbolic Automata Symbolic Learning Conclusion Deterministic Symbolic Automaton A = (Σ , Σ , ψ, Q, δ, q 0 , F )
Learning Symbolic Automata Symbolic Learning Conclusion Deterministic Symbolic Automaton A = (Σ , Σ , ψ, Q, δ, q 0 , F ), where • Σ is the input alphabet, • Q is a finite set of states, • q 0 is the initial state, • F is the set of accepting states,
Learning Symbolic Automata Symbolic Learning Conclusion Deterministic Symbolic Automaton A = (Σ , Σ , ψ, Q, δ, q 0 , F ), where • Σ is the input alphabet, • Q is a finite set of states, • q 0 is the initial state, • F is the set of accepting states, • Σ is a finite alphabet, decomposable into Σ = � q ∈ Q Σ q ,
Learning Symbolic Automata Symbolic Learning Conclusion Deterministic Symbolic Automaton A = (Σ , Σ , ψ, Q, δ, q 0 , F ), where • Σ is the input alphabet, • Q is a finite set of states, • q 0 is the initial state, • F is the set of accepting states, • Σ is a finite alphabet, decomposable into Σ = � q ∈ Q Σ q , • ψ = { ψ q : q ∈ Q } is a family of total surjective functions ψ q : Σ → Σ q ,
Learning Symbolic Automata Symbolic Learning Conclusion Deterministic Symbolic Automaton A = (Σ , Σ , ψ, Q, δ, q 0 , F ), where • Σ is the input alphabet, • Q is a finite set of states, • q 0 is the initial state, • F is the set of accepting states, • Σ is a finite alphabet, decomposable into Σ = � q ∈ Q Σ q , • ψ = { ψ q : q ∈ Q } is a family of total surjective functions ψ q : Σ → Σ q , • δ : Q × Σ → Q is a partial transition function decomposable into a family of total functions δ q : { q } × Σ q → Q ,
Learning Symbolic Automata Symbolic Learning Conclusion Deterministic Symbolic Automaton A = (Σ , Σ , ψ, Q, δ, q 0 , F ), where • Σ is the input alphabet, • Q is a finite set of states, • q 0 is the initial state, • F is the set of accepting states, • Σ is a finite alphabet, decomposable into Σ = � q ∈ Q Σ q , • ψ = { ψ q : q ∈ Q } is a family of total surjective functions ψ q : Σ → Σ q , • δ : Q × Σ → Q is a partial transition function decomposable into a family of total functions δ q : { q } × Σ q → Q , w = a 1 a 2 . . . a n accepted δ ∗ ( q 0 , a 1 a 2 . . . a n ) = δ ∗ ( δ ( q 0 , ψ q ( a 1 )) , a 2 . . . a n ) ∈ F
Learning Symbolic Automata Symbolic Learning Conclusion Deterministic Symbolic Automaton A = (Σ , Σ , ψ, Q, δ, q 0 , F ), where • Σ is the input alphabet, • Q is a finite set of states, • q 0 is the initial state, • F is the set of accepting states, • Σ is a finite alphabet, decomposable into Σ = � q ∈ Q Σ q , • ψ = { ψ q : q ∈ Q } is a family of total surjective functions ψ q : Σ → Σ q , • δ : Q × Σ → Q is a partial transition function decomposable into a family of total functions δ q : { q } × Σ q → Q , L ( A ) = { w ∈ Σ ∗ | δ ∗ ( q 0 , w ) ∈ F } w = a 1 a 2 . . . a n accepted δ ∗ ( q 0 , a 1 a 2 . . . a n ) = δ ∗ ( δ ( q 0 , ψ q ( a 1 )) , a 2 . . . a n ) ∈ F
Learning Symbolic Automata Symbolic Learning Conclusion Outline Learning Regular Languages Learning regular languages L* Algorithm Queries Observation tables Symbolic Automata Symbolic automata Symbolic languages Symbolic Learning Evidences Symbolic Algorithm Example
Learning Symbolic Automata Symbolic Learning Conclusion Symbolic Algorithm Evidences a 11 [1] [1 , 50] , [71 , 100] a 31 , a 33 q 1 q 3 [73 , 100] a 13 a 01 [1 , 50] a 12 [51 , 70] a 32 q 0 [2 , 72] [51 , 100] a 02 a 21 a 22 [21 , 100] [1 , 20] q 2 q 4 a 41 Σ
Recommend
More recommend