Learning Symbolic Automata Symbolic Learning Conclusion Observation Table - T = (Ξ£ , S, R, E, f ) Η« a β’ Ξ£ = { a, b } Η« β + a + + β’ S β Ξ£ β prefixes b β β β β β’ R = S Β· Ξ£ \ S boundary ba + + aa β’ E β Ξ£ β suffixes ab + + β β bb β’ f : S βͺ R Γ E β { + , β} classification baa β β function β β bab
Learning Symbolic Automata Symbolic Learning Conclusion Observation Table - T = (Ξ£ , S, R, E, f ) Η« a β’ Ξ£ = { a, b } Η« β + a + + β’ S β Ξ£ β prefixes b β β β β β’ R = S Β· Ξ£ \ S boundary ba + + aa β’ E β Ξ£ β suffixes ab + + β β bb β’ f : S βͺ R Γ E β { + , β} classification baa β β function β β bab β’ f s : E β { + , β} for all s β S βͺ R f s ( e ) = f ( s Β· e )
Learning Symbolic Automata Symbolic Learning Conclusion Observation Table - T = (Ξ£ , S, R, E, f ) Η« a β’ Ξ£ = { a, b } Η« β + a + + β’ S β Ξ£ β prefixes b β β β β β’ R = S Β· Ξ£ \ S boundary ba + + aa β’ E β Ξ£ β suffixes ab + + β β bb β’ f : S βͺ R Γ E β { + , β} classification baa β β function β β bab β’ f s : E β { + , β} for all s β S βͺ R f s ( e ) = f ( s Β· e )
Learning Symbolic Automata Symbolic Learning Conclusion Observation Table - T = (Ξ£ , S, R, E, f ) Η« a β’ Ξ£ = { a, b } Η« β + a + + β’ S β Ξ£ β prefixes b β β β β β’ R = S Β· Ξ£ \ S boundary ba + + aa β’ E β Ξ£ β suffixes ab + + β β bb β’ f : S βͺ R Γ E β { + , β} classification baa β β function β β bab β’ f s : E β { + , β} for all s β S βͺ R f s ( e ) = f ( s Β· e )
Learning Symbolic Automata Symbolic Learning Conclusion Observation Table - T = (Ξ£ , S, R, E, f ) Η« a β’ Ξ£ = { a, b } Η« β + a + + β’ S β Ξ£ β prefixes b β β β β β’ R = S Β· Ξ£ \ S boundary ba + + aa β’ E β Ξ£ β suffixes ab + + β β bb β’ f : S βͺ R Γ E β { + , β} classification baa β β function β β bab β’ f s : E β { + , β} for all s β S βͺ R f s ( e ) = f ( s Β· e )
Learning Symbolic Automata Symbolic Learning Conclusion Observation Table - T = (Ξ£ , S, R, E, f ) Η« a Η« β + a + + b β β β β ba + + aa ab + + β β bb baa β β β β bab
Learning Symbolic Automata Symbolic Learning Conclusion Observation Table - T = (Ξ£ , S, R, E, f ) Η« a q 1 Η« β + a + + b β β q 0 β β ba + + aa q 2 ab + + β β bb baa β β β β bab
Learning Symbolic Automata Symbolic Learning Conclusion Observation Table - T = (Ξ£ , S, R, E, f ) Η« a q 1 Η« β + a a + + b β β q 0 β β ba b + + aa q 2 ab + + β β bb baa β β β β bab
Learning Symbolic Automata Symbolic Learning Conclusion Observation Table - T = (Ξ£ , S, R, E, f ) Η« a a, b q 1 Η« β + a a + + b β β q 0 β β ba b + + aa q 2 ab + + β β bb baa β β β β bab
Learning Symbolic Automata Symbolic Learning Conclusion Observation Table - T = (Ξ£ , S, R, E, f ) Η« a a, b q 1 Η« β + a a + + b β β q 0 β β ba b + + aa a, b q 2 ab + + β β bb baa β β β β bab
Learning Symbolic Automata Symbolic Learning Conclusion Observation Table - T = (Ξ£ , S, R, E, f ) a, b q 1 Η« a a Η« β + q 0 b a + + q 2 a, b b β β β β ba + + aa ab + + β β bb baa β β β β bab
Learning Symbolic Automata Symbolic Learning Conclusion Observation Table - T = (Ξ£ , S, R, E, f ) a, b q 1 Η« a a Η« β + q 0 β’ S βͺ R is prefix-closed b a + + q 2 a, b b β β β β ba + + aa ab + + β β bb baa β β β β bab
Learning Symbolic Automata Symbolic Learning Conclusion Observation Table - T = (Ξ£ , S, R, E, f ) a, b q 1 Η« a a Η« β + q 0 β’ S βͺ R is prefix-closed b a + + q 2 a, b b β β β’ E is suffix-closed β β ba + + aa ab + + β β bb baa β β β β bab
Learning Symbolic Automata Symbolic Learning Conclusion Observation Table - T = (Ξ£ , S, R, E, f ) a, b q 1 Η« a a Η« β + q 0 β’ S βͺ R is prefix-closed b a + + q 2 a, b b β β β’ E is suffix-closed β β ba + + aa ab + + β’ T closed β β bb β r β R , β s β S, f r = f s baa β β β β bab
Learning Symbolic Automata Symbolic Learning Conclusion Observation Table - T = (Ξ£ , S, R, E, f ) a, b q 1 Η« a a Η« β + q 0 β’ S βͺ R is prefix-closed b a + + q 2 a, b b β β β’ E is suffix-closed β β ba + + aa ab + + β’ T closed β β bb β r β R , β s β S, f r = f s baa β β + β bab
Learning Symbolic Automata Symbolic Learning Conclusion Observation Table - T = (Ξ£ , S, R, E, f ) a, b q 1 Η« a a Η« β + q 0 q 3 β’ S βͺ R is prefix-closed b b a + + q 2 a, b b β β β’ E is suffix-closed β β ba bab + β aa + + β’ T closed + + ab β r β R , β s β S, f r = f s bb β β β β baa : : :
Learning Symbolic Automata Symbolic Learning Conclusion Observation Table - T = (Ξ£ , S, R, E, f ) a, b q 1 Η« a a Η« β + q 0 q 3 β’ S βͺ R is prefix-closed b b a + + q 2 a, b b β β β’ E is suffix-closed β β ba bab + β aa + + β’ T closed + + ab β r β R , β s β S, f r = f s bb β β β’ T consistent β β baa β s, s β² β S, β a β Ξ£, f s = f s β² β f s Β· a = f s β² Β· a : : :
Learning Symbolic Automata Symbolic Learning Conclusion Observation Table - T = (Ξ£ , S, R, E, f ) a, b q 1 Η« a a Η« β + q 0 q 3 β’ S βͺ R is prefix-closed b b a + + q 2 a, b b β β β’ E is suffix-closed β β ba bab + β aa + + β’ T closed + + ab β r β R , β s β S, f r = f s bb β β β’ T consistent β β baa β s, s β² β S, β a β Ξ£, f s = f s β² β f s Β· a = f s β² Β· a : : :
Learning Symbolic Automata Symbolic Learning Conclusion Observation Table - T = (Ξ£ , S, R, E, f ) a, b q 1 Η« a a Η« β + q 0 q 3 β’ S βͺ R is prefix-closed b b a + + q 2 a, b b β β β’ E is suffix-closed β β ba bab + β aa + + β’ T closed + + ab β r β R , β s β S, f r = f s bb β β β’ T consistent β β baa β s, s β² β S, β a β Ξ£, f s = f s β² β f s Β· a = f s β² Β· a : : :
Learning Symbolic Automata Symbolic Learning Conclusion Observation Table - T = (Ξ£ , S, R, E, f ) a, b q 1 Η« a b a Η« β + q 0 q 3 β’ S βͺ R is prefix-closed b b a + + q 2 a, b b β β β’ E is suffix-closed β β ba bab + β aa + + β’ T closed + + ab β r β R , β s β S, f r = f s bb β β β’ T consistent β β baa β s, s β² β S, β a β Ξ£, f s = f s β² β f s Β· a = f s β² Β· a : : :
Learning Symbolic Automata Symbolic Learning Conclusion Observation Table - T = (Ξ£ , S, R, E, f ) a, b q 1 Η« a b a a, b Η« β + : q 0 q 4 ? β’ S βͺ R is prefix-closed a + + : b b q 2 q 3 b β β β a β’ E is suffix-closed β β + ba a b bab + β : aa + + : β’ T closed + + : ab β r β R , β s β S, f r = f s bb β β : β’ T consistent β β : baa β s, s β² β S, β a β Ξ£, f s = f s β² β f s Β· a = f s β² Β· a : : : :
Learning Symbolic Automata Symbolic Learning Conclusion L β Example (Ξ£ = { a, b } )
Learning Symbolic Automata Symbolic Learning Conclusion L β Example (Ξ£ = { a, b } ) observation table hypothesis automaton Η« a, b q 0 ? Η« β a b
Learning Symbolic Automata Symbolic Learning Conclusion L β Example (Ξ£ = { a, b } ) observation table hypothesis automaton Η« a, b q 0 ? Η« β a + β b
Learning Symbolic Automata Symbolic Learning Conclusion L β Example (Ξ£ = { a, b } ) observation table hypothesis automaton Η« a, b q 0 ? Η« β a + β b
Learning Symbolic Automata Symbolic Learning Conclusion L β Example (Ξ£ = { a, b } ) observation table hypothesis automaton Η« a a, b q 0 q 1 ? Η« β + a b β b
Learning Symbolic Automata Symbolic Learning Conclusion L β Example (Ξ£ = { a, b } ) observation table hypothesis automaton Η« a a, b q 0 q 1 ? Η« β + a b β b aa ab
Learning Symbolic Automata Symbolic Learning Conclusion L β Example (Ξ£ = { a, b } ) observation table hypothesis automaton Η« a a, b q 0 q 1 ? Η« β + a b β b aa β + ab
Learning Symbolic Automata Symbolic Learning Conclusion L β Example (Ξ£ = { a, b } ) observation table hypothesis automaton Η« a a, b q 0 q 1 ? Η« β + a b β b aa β + ab
Learning Symbolic Automata Symbolic Learning Conclusion L β Example (Ξ£ = { a, b } ) observation table hypothesis automaton Η« a q 0 q 1 b Η« β a + a b β b aa β + ab
Learning Symbolic Automata Symbolic Learning Conclusion L β Example (Ξ£ = { a, b } ) observation table hypothesis automaton Η« a q 0 q 1 b Η« β a + a b Ask Equivalence Query: β b counterexample: β ba aa β + ab
Learning Symbolic Automata Symbolic Learning Conclusion L β Example (Ξ£ = { a, b } ) observation table hypothesis automaton Η« a q 0 q 1 b Η« β a + a b ba β counterexample: β ba b β β aa ab +
Learning Symbolic Automata Symbolic Learning Conclusion L β Example (Ξ£ = { a, b } ) observation table hypothesis automaton Η« a q 0 q 1 b Η« β a + a b b β β ba counterexample: β ba β aa ab +
Learning Symbolic Automata Symbolic Learning Conclusion L β Example (Ξ£ = { a, b } ) observation table hypothesis automaton Η« a q 0 q 1 b Η« β a + a b b β β ba β aa ab + bb baa bab
Learning Symbolic Automata Symbolic Learning Conclusion L β Example (Ξ£ = { a, b } ) observation table hypothesis automaton Η« a q 0 q 1 b Η« β a + a b b β β ba β aa ab + bb + baa β bab +
Learning Symbolic Automata Symbolic Learning Conclusion L β Example (Ξ£ = { a, b } ) observation table hypothesis automaton Η« a q 0 q 1 b Η« β a + a b b β Table is not consistent! β ba β aa ab + bb + baa β bab +
Learning Symbolic Automata Symbolic Learning Conclusion L β Example (Ξ£ = { a, b } ) observation table hypothesis automaton Η« a q 0 q 1 b Η« β a + a b b β Table is not consistent! β b a β aa ab + bb + baa β bab +
Learning Symbolic Automata Symbolic Learning Conclusion L β Example (Ξ£ = { a, b } ) observation table hypothesis automaton Η« a a q 0 q 1 b Η« β a + a b b β Table is not consistent! β b a β aa ab + bb + baa β bab +
Learning Symbolic Automata Symbolic Learning Conclusion L β Example (Ξ£ = { a, b } ) observation table hypothesis automaton Η« a a b q 0 q 1 Η« β + + β b a b a b β β q 2 β β b a β aa ab + bb + baa β bab +
Learning Symbolic Automata Symbolic Learning Conclusion L β Example (Ξ£ = { a, b } ) observation table hypothesis automaton Η« a a b q 0 q 1 Η« β + + β b a b a b β β q 2 β β b a β + aa ab + β bb + β baa β β bab + β
Learning Symbolic Automata Symbolic Learning Conclusion L β Example (Ξ£ = { a, b } ) observation table hypothesis automaton Η« a a b q 0 q 1 Η« β + a + β b a b a b β β q 2 β β ba β + aa ab + β bb + β baa β β bab + β
Learning Symbolic Automata Symbolic Learning Conclusion L β Example (Ξ£ = { a, b } ) observation table hypothesis automaton Η« a a b q 0 q 1 Η« β + a + β b a b a b β β q 2 β β ba Ask Equivalence Query: β + aa True ab + β bb + β baa β β bab + β
Learning Symbolic Automata Symbolic Learning Conclusion Outline Learning Regular Languages Learning regular languages L* Algorithm Queries Observation tables Symbolic Automata Symbolic automata Symbolic languages Symbolic Learning Evidences Symbolic Algorithm Example
Learning Symbolic Automata Symbolic Learning Conclusion Deterministic Symbolic Automaton Ξ£ = [1 , 100] β N [1] [1 , 50] , [71 , 100] q 1 q 3 [73 , 100] [1 , 50] [51 , 70] q 0 [2 , 72] [51 , 100] [21 , 100] [1 , 20] q 2 q 4 Ξ£
Learning Symbolic Automata Symbolic Learning Conclusion Deterministic Symbolic Automaton Ξ£ = [1 , 100] β N [1] [1 , 50] , [71 , 100] q 1 q 3 [73 , 100] [1 , 50] [51 , 70] q 0 [2 , 72] [51 , 100] [21 , 100] [1 , 20] q 2 q 4 Ξ£
Learning Symbolic Automata Symbolic Learning Conclusion Deterministic Symbolic Automaton Ξ£ = [1 , 100] β N [1] [1 , 50] , [71 , 100] q 1 q 3 [73 , 100] [1 , 50] [51 , 70] q 0 [2 , 72] [51 , 100] [21 , 100] [1 , 20] q 2 q 4 Ξ£
Learning Symbolic Automata Symbolic Learning Conclusion Deterministic Symbolic Automaton Ξ£ = [1 , 100] β N [1] [1 , 50] , [71 , 100] q 1 q 3 [73 , 100] [1 , 50] [51 , 70] q 0 [2 , 72] [51 , 100] [21 , 100] [1 , 20] q 2 q 4 Ξ£
Learning Symbolic Automata Symbolic Learning Conclusion Deterministic Symbolic Automaton Ξ£ = [1 , 100] β N [1] [1 , 50] , [71 , 100] q 1 q 3 [73 , 100] [1 , 50] [51 , 70] q 0 [2 , 72] [51 , 100] [21 , 100] [1 , 20] q 2 q 4 Ξ£
Learning Symbolic Automata Symbolic Learning Conclusion Deterministic Symbolic Automaton Ξ£ = [1 , 100] β N [1] [1 , 50] , [71 , 100] q 1 q 3 [73 , 100] [1 , 50] [51 , 70] q 0 [2 , 72] [51 , 100] [21 , 100] [1 , 20] q 2 q 4 Ξ£
Learning Symbolic Automata Symbolic Learning Conclusion Deterministic Symbolic Automaton Ξ£ = [1 , 100] β N a 01 = [1 , 50] a 02 = [51 , 100] a 11 [1] [1 , 50] , [71 , 100] a 11 = . . . a 31 , a 33 q 1 q 3 . . . [73 , 100] a 13 a 01 [1 , 50] a 12 [51 , 70] a 32 q 0 [2 , 72] [51 , 100] a 02 a 21 a 22 [21 , 100] [1 , 20] q 2 q 4 a 41 Ξ£
Learning Symbolic Automata Symbolic Learning Conclusion Deterministic Symbolic Automaton Ξ£ = [1 , 100] β N a 01 = [1 , 50] a 02 = [51 , 100] a 11 [1] [1 , 50] , [71 , 100] a 11 = . . . a 31 , a 33 q 1 q 3 . . . [73 , 100] a 13 a 01 Ξ£ = { a 01 , a 02 , . . . } [1 , 50] a 12 [51 , 70] a 32 q 0 [2 , 72] [51 , 100] a 02 a 21 a 22 [21 , 100] [1 , 20] q 2 q 4 a 41 Ξ£
Learning Symbolic Automata Symbolic Learning Conclusion Deterministic Symbolic Automaton Ξ£ = [1 , 100] β N a 01 = [1 , 50] a 02 = [51 , 100] a 11 [1] [1 , 50] , [71 , 100] a 11 = . . . a 31 , a 33 q 1 q 3 . . . [73 , 100] a 13 a 01 Ξ£ = { a 01 , a 02 , . . . } [1 , 50] Ξ£ q 0 = { a 01 , a 02 } a 12 [51 , 70] a 32 q 0 Ξ£ q 1 = { a 11 , a 12 , a 13 } [2 , 72] . . . [51 , 100] a 02 a 21 a 22 [21 , 100] [1 , 20] q 2 q 4 a 41 Ξ£
Learning Symbolic Automata Symbolic Learning Conclusion Deterministic Symbolic Automaton Ξ£ = [1 , 100] β N a 01 = [1 , 50] a 02 = [51 , 100] a 11 [1] [1 , 50] , [71 , 100] a 11 = . . . a 31 , a 33 q 1 q 3 . . . [73 , 100] a 13 a 01 Ξ£ = { a 01 , a 02 , . . . } [1 , 50] Ξ£ q 0 = { a 01 , a 02 } a 12 [51 , 70] a 32 q 0 Ξ£ q 1 = { a 11 , a 12 , a 13 } [2 , 72] . . . [51 , 100] a 02 οΏ½ a = Ξ£ a 21 a 22 [21 , 100] [1 , 20] a β Ξ£ q q 2 q 4 a 41 Ξ£
Learning Symbolic Automata Symbolic Learning Conclusion Deterministic Symbolic Automaton Ξ£ = [1 , 100] β N a 01 = [1 , 50] a 02 = [51 , 100] a 11 [1] [1 , 50] , [71 , 100] a 11 = . . . a 31 , a 33 q 1 q 3 . . . [73 , 100] a 13 a 01 Ξ£ = { a 01 , a 02 , . . . } [1 , 50] Ξ£ q 0 = { a 01 , a 02 } a 12 [51 , 70] a 32 q 0 Ξ£ q 1 = { a 11 , a 12 , a 13 } [2 , 72] . . . [51 , 100] a 02 οΏ½ a = Ξ£ a 21 a 22 [21 , 100] [1 , 20] a β Ξ£ q q 2 q 4 Ο q : Ξ£ β Ξ£ q , β q β Q a 41 Ξ£
Learning Symbolic Automata Symbolic Learning Conclusion Deterministic Symbolic Automaton Ξ£ = [1 , 100] β N a 01 = [1 , 50] a 02 = [51 , 100] a 11 [1] [1 , 50] , [71 , 100] a 11 = . . . a 31 , a 33 q 1 q 3 . . . [73 , 100] a 13 a 01 Ξ£ = { a 01 , a 02 , . . . } [1 , 50] Ξ£ q 0 = { a 01 , a 02 } a 12 [51 , 70] a 32 q 0 Ξ£ q 1 = { a 11 , a 12 , a 13 } [2 , 72] . . . [51 , 100] a 02 οΏ½ a = Ξ£ a 21 a 22 [21 , 100] [1 , 20] a β Ξ£ q q 2 q 4 Ο q : Ξ£ β Ξ£ q , β q β Q a 41 Ξ£ Ο q 1 (10) = a 12
Learning Symbolic Automata Symbolic Learning Conclusion Deterministic Symbolic Automaton Ξ£ = [1 , 100] β N a 01 = [1 , 50] a 02 = [51 , 100] a 11 [1] [1 , 50] , [71 , 100] a 11 = . . . a 31 , a 33 q 1 q 3 . . . [73 , 100] a 13 a 01 Ξ£ = { a 01 , a 02 , . . . } [1 , 50] Ξ£ q 0 = { a 01 , a 02 } a 12 [51 , 70] a 32 q 0 Ξ£ q 1 = { a 11 , a 12 , a 13 } [2 , 72] . . . [51 , 100] a 02 οΏ½ a = Ξ£ a 21 a 22 [21 , 100] [1 , 20] a β Ξ£ q q 2 q 4 Ο q : Ξ£ β Ξ£ q , β q β Q a 41 Ξ£ Ο q 1 (10) = a 12 Ξ΄ : Q Γ Ξ£ β Q
Learning Symbolic Automata Symbolic Learning Conclusion Deterministic Symbolic Automaton Ξ£ = [1 , 100] β N a 01 = [1 , 50] a 02 = [51 , 100] a 11 [1] [1 , 50] , [71 , 100] a 11 = . . . a 31 , a 33 q 1 q 3 . . . [73 , 100] a 13 a 01 Ξ£ = { a 01 , a 02 , . . . } [1 , 50] Ξ£ q 0 = { a 01 , a 02 } a 12 [51 , 70] a 32 q 0 Ξ£ q 1 = { a 11 , a 12 , a 13 } [2 , 72] . . . [51 , 100] a 02 οΏ½ a = Ξ£ a 21 a 22 [21 , 100] [1 , 20] a β Ξ£ q q 2 q 4 Ο q : Ξ£ β Ξ£ q , β q β Q a 41 Ξ£ Ο q 1 (10) = a 12 Ξ΄ : Q Γ Ξ£ β Q Ξ΄ ( q, a ) = q β² iff Ξ΄ ( q, a ) = q β² , a β a
Learning Symbolic Automata Symbolic Learning Conclusion Deterministic Symbolic Automaton A = (Ξ£ , Ξ£ , Ο, Q, Ξ΄, q 0 , F )
Learning Symbolic Automata Symbolic Learning Conclusion Deterministic Symbolic Automaton A = (Ξ£ , Ξ£ , Ο, Q, Ξ΄, q 0 , F ), where β’ Ξ£ is the input alphabet, β’ Q is a finite set of states, β’ q 0 is the initial state, β’ F is the set of accepting states,
Learning Symbolic Automata Symbolic Learning Conclusion Deterministic Symbolic Automaton A = (Ξ£ , Ξ£ , Ο, Q, Ξ΄, q 0 , F ), where β’ Ξ£ is the input alphabet, β’ Q is a finite set of states, β’ q 0 is the initial state, β’ F is the set of accepting states, β’ Ξ£ is a finite alphabet, decomposable into Ξ£ = οΏ½ q β Q Ξ£ q ,
Learning Symbolic Automata Symbolic Learning Conclusion Deterministic Symbolic Automaton A = (Ξ£ , Ξ£ , Ο, Q, Ξ΄, q 0 , F ), where β’ Ξ£ is the input alphabet, β’ Q is a finite set of states, β’ q 0 is the initial state, β’ F is the set of accepting states, β’ Ξ£ is a finite alphabet, decomposable into Ξ£ = οΏ½ q β Q Ξ£ q , β’ Ο = { Ο q : q β Q } is a family of total surjective functions Ο q : Ξ£ β Ξ£ q ,
Learning Symbolic Automata Symbolic Learning Conclusion Deterministic Symbolic Automaton A = (Ξ£ , Ξ£ , Ο, Q, Ξ΄, q 0 , F ), where β’ Ξ£ is the input alphabet, β’ Q is a finite set of states, β’ q 0 is the initial state, β’ F is the set of accepting states, β’ Ξ£ is a finite alphabet, decomposable into Ξ£ = οΏ½ q β Q Ξ£ q , β’ Ο = { Ο q : q β Q } is a family of total surjective functions Ο q : Ξ£ β Ξ£ q , β’ Ξ΄ : Q Γ Ξ£ β Q is a partial transition function decomposable into a family of total functions Ξ΄ q : { q } Γ Ξ£ q β Q ,
Learning Symbolic Automata Symbolic Learning Conclusion Deterministic Symbolic Automaton A = (Ξ£ , Ξ£ , Ο, Q, Ξ΄, q 0 , F ), where β’ Ξ£ is the input alphabet, β’ Q is a finite set of states, β’ q 0 is the initial state, β’ F is the set of accepting states, β’ Ξ£ is a finite alphabet, decomposable into Ξ£ = οΏ½ q β Q Ξ£ q , β’ Ο = { Ο q : q β Q } is a family of total surjective functions Ο q : Ξ£ β Ξ£ q , β’ Ξ΄ : Q Γ Ξ£ β Q is a partial transition function decomposable into a family of total functions Ξ΄ q : { q } Γ Ξ£ q β Q , w = a 1 a 2 . . . a n accepted Ξ΄ β ( q 0 , a 1 a 2 . . . a n ) = Ξ΄ β ( Ξ΄ ( q 0 , Ο q ( a 1 )) , a 2 . . . a n ) β F
Learning Symbolic Automata Symbolic Learning Conclusion Deterministic Symbolic Automaton A = (Ξ£ , Ξ£ , Ο, Q, Ξ΄, q 0 , F ), where β’ Ξ£ is the input alphabet, β’ Q is a finite set of states, β’ q 0 is the initial state, β’ F is the set of accepting states, β’ Ξ£ is a finite alphabet, decomposable into Ξ£ = οΏ½ q β Q Ξ£ q , β’ Ο = { Ο q : q β Q } is a family of total surjective functions Ο q : Ξ£ β Ξ£ q , β’ Ξ΄ : Q Γ Ξ£ β Q is a partial transition function decomposable into a family of total functions Ξ΄ q : { q } Γ Ξ£ q β Q , L ( A ) = { w β Ξ£ β | Ξ΄ β ( q 0 , w ) β F } w = a 1 a 2 . . . a n accepted Ξ΄ β ( q 0 , a 1 a 2 . . . a n ) = Ξ΄ β ( Ξ΄ ( q 0 , Ο q ( a 1 )) , a 2 . . . a n ) β F
Learning Symbolic Automata Symbolic Learning Conclusion Outline Learning Regular Languages Learning regular languages L* Algorithm Queries Observation tables Symbolic Automata Symbolic automata Symbolic languages Symbolic Learning Evidences Symbolic Algorithm Example
Learning Symbolic Automata Symbolic Learning Conclusion Symbolic Algorithm Evidences a 11 [1] [1 , 50] , [71 , 100] a 31 , a 33 q 1 q 3 [73 , 100] a 13 a 01 [1 , 50] a 12 [51 , 70] a 32 q 0 [2 , 72] [51 , 100] a 02 a 21 a 22 [21 , 100] [1 , 20] q 2 q 4 a 41 Ξ£
Recommend
More recommend