LBNF/DUNE and the Hunt for Leptonic CP Violation Mary Bishai LBNF/DUNE and the Hunt for Leptonic Brookhaven National Lab CP Violation Introduction FPCP 2016, 6-9 June 2016, Caltech CP in ν SM CPV and other New Physics Current Experimental Mary Bishai Landscape Brookhaven National Lab LBNF/DUNE Conclusion June 8, 2016 1 / 41
Outline LBNF/DUNE and the Hunt for Leptonic CP Violation 1 Introduction Mary Bishai Brookhaven CP in ν SM National Lab CPV and other New Physics Introduction CP in ν SM CPV and other New Physics 2 Current Experimental Landscape Current Experimental Landscape 3 LBNF/DUNE LBNF/DUNE Conclusion 4 Conclusion 2 / 41
CP Violation in PMNS and CKM In 3-flavor mixing the degree of CP violation is determined by the LBNF/DUNE and the Hunt Jarlskog invariant: for Leptonic J PMNS ≡ 1 8 sin 2 θ 12 sin 2 θ 13 sin 2 θ 23 cos θ 13 sin δ CP . CP Violation CP NuFIT 2.1 (2016) Mary Bishai 15 Brookhaven NO, IO (LEM) National Lab NO, IO (LID) 10 Introduction 2 ∆χ CP in ν SM CPV and other 5 New Physics Current 0 Experimental 0.025 0.03 0.035 0.04 -0.04 -0.02 0 0.02 0.04 max = c 12 s 12 c 23 s 23 c 2 max sin δ CP Landscape J CP 13 s 13 J CP = J CP LBNF/DUNE (JHEP 11 (2014) 052, arXiv:1409.5439) Conclusion Given the current best-fit values of the ν mixing angles : ≈ 3 × 10 − 2 sin δ CP . J PMNS CP For CKM: J CKM ≈ 3 × 10 − 5 , CP despite the large value of δ CKM ≈ 70 ◦ . CP 3 / 41
ν µ → ν e Oscillations in the 3-flavor ν SM In the ν 3-flavor model matter/anti-matter asymmetries in neutrinos LBNF/DUNE are best probed using ν µ / ¯ ν µ → ν e / ¯ ν e oscillations (or vice versa). With and the Hunt 31 = 0 . 03 and sin 2 θ 13 = 0 . 02, (M. Freund. Phys. Rev. terms up to second order in α ≡ ∆ m 2 21 / ∆ m 2 for Leptonic CP Violation D 64, 053003): P ( ν µ → ν e ) ∼ = P ( ν e → ν µ ) ∼ Mary Bishai = P 0 + P sin δ + P cos δ + P 3 Brookhaven ���� � �� � � �� � ���� θ 13 CP violating CP conserving solar oscillation National Lab where for oscillations in vacuum: Introduction CP in ν SM sin 2 θ 23 sin 2 2 θ 13 sin 2 (∆) , sin 2 (2 θ 13 ) CPV and other New Physics P 0 = ( A − 1) 2 Current Experimental 8 J cp Landscape α 8 J cp sin 3 (∆) , P sin δ = A (1 − A ) LBNF/DUNE α 8 J cp cot δ CP cos ∆ sin 2 (∆) , 8 J cp cot δ CP Conclusion = P cos δ A (1 − A ) xx α 2 cos 2 θ 23 sin 2 2 θ 12 sin 2 (∆) , sin 2 (2 θ 12 ) P 3 = A 2 and where ∆ = ∆ m 2 31 L / 4 E For ¯ ν µ → ¯ ν e , P sin δ → − P sin δ 4 / 41
ν µ → ν e Oscillations in the 3-flavor ν SM In the ν 3-flavor model matter/anti-matter asymmetries in neutrinos LBNF/DUNE are best probed using ν µ / ¯ ν µ → ν e / ¯ ν e oscillations (or vice versa). With and the Hunt 31 = 0 . 03 and sin 2 θ 13 = 0 . 02, (M. Freund. Phys. Rev. terms up to second order in α ≡ ∆ m 2 21 / ∆ m 2 for Leptonic CP Violation D 64, 053003): P ( ν µ → ν e ) ∼ = P ( ν e → ν µ ) ∼ Mary Bishai = P 0 + P sin δ + P cos δ + P 3 Brookhaven ���� � �� � � �� � ���� θ 13 CP violating CP conserving solar oscillation National Lab where for oscillations in matter with constant density: Introduction CP in ν SM sin 2 θ 23 sin 2 2 θ 13 CPV and other New Physics ( A − 1) 2 sin 2 [( A − 1)∆] , P 0 = Current Experimental 8 J cp Landscape P sin δ = α A (1 − A ) sin ∆ sin( A ∆) sin[(1 − A )∆] , LBNF/DUNE α 8 J cp cot δ CP Conclusion = cos ∆ sin( A ∆) sin[(1 − A )∆] , P cos δ A (1 − A ) α 2 cos 2 θ 23 sin 2 2 θ 12 sin 2 ( A ∆) , P 3 = A 2 and where √ ∆ = ∆ m 2 2 G F N e 2 E / ∆ m 2 31 L / 4 E and A = 31 . For ¯ ν µ → ¯ ν e , P sin δ → − P sin δ 5 / 41
ν µ → ν e Oscillations in the 3-flavor ν SM LBNF/DUNE The ν µ → ν e probability maxima due to the atmospheric oscillation and the Hunt scale occur at for Leptonic CP Violation � π � L ( km ) (2 n − 1) 515 km = ≈ (2 n − 1) × Mary Bishai 1 . 27 × ∆ m 2 31 ( eV 2 ) E n ( GeV ) 2 GeV Brookhaven National Lab (a) Electron Neutrino Appearance Probabilty vs. L/E 0.2 ) e Introduction ν δ 0.18 Vacuum oscillations, all terms, = 0 → cp CP in ν SM µ θ 2 sin 2 term only CPV and other 0.16 ν P( 13 New Physics 0.14 Solar oscillation term only Current 0.12 Experimental Landscape 0.1 LBNF/DUNE 0.08 0.06 Conclusion 0.04 0.02 0 0.0005 0.001 0.0015 0.002 0.0025 0.003 0.0035 0.004 0.0045 0.005 Neutrino Energy/Baseline (GeV/km) 6 / 41
ν µ → ν e Oscillations in the 3-flavor ν SM LBNF/DUNE The ν µ → ν e probability maxima due to the atmospheric oscillation and the Hunt scale occur at for Leptonic CP Violation � π � L ( km ) (2 n − 1) 515 km = ≈ (2 n − 1) × Mary Bishai 1 . 27 × ∆ m 2 31 ( eV 2 ) E n ( GeV ) 2 GeV Brookhaven National Lab (b) Impact of CP Phase on Vacuum Oscillations 0.2 ) e Introduction δ ν Vacuum oscillations, all terms, = 0 0.18 → cp CP in ν SM δ π All terms, = + /2 µ cp CPV and other 0.16 ν δ π P( All terms, = - /2 New Physics cp δ π 0.14 All terms, = cp Current 0.12 Experimental Landscape 0.1 LBNF/DUNE 0.08 0.06 Conclusion 0.04 0.02 0 0.0005 0.001 0.0015 0.002 0.0025 0.003 0.0035 0.004 0.0045 0.005 Neutrino Energy/Baseline (GeV/km) 7 / 41
ν µ → ν e Oscillations in the 3-flavor ν SM LBNF/DUNE The ν µ → ν e probability maxima due to the atmospheric oscillation and the Hunt scale occur at for Leptonic CP Violation � π � L ( km ) (2 n − 1) 515 km = ≈ (2 n − 1) × Mary Bishai 1 . 27 × ∆ m 2 31 ( eV 2 ) E n ( GeV ) 2 GeV Brookhaven National Lab δ (c) Impact of Matter Effects on Oscillations ( = 0) 0.2 cp ) e Introduction ν δ Vacuum oscillations, all terms, = 0 0.18 → cp CP in ν SM µ Matter effect at 1000km, NH CPV and other 0.16 ν P( New Physics Matter effect at 2000km, NH 0.14 Current Matter effect at 3000km, NH 0.12 Experimental Matter effect at 3000km, IH Landscape 0.1 LBNF/DUNE 0.08 0.06 Conclusion 0.04 0.02 0 0.0005 0.001 0.0015 0.002 0.0025 0.003 0.0035 0.004 0.0045 0.005 Neutrino Energy/Baseline (GeV/km) 8 / 41
Impact of Sterile Neutrinos on Long-Baseline ν Oscillations LBNF/DUNE and the Hunt Neutrino Energy (GeV) Neutrino Energy (GeV) for Leptonic CP Violation 2 -1 2 -1 10 10 1 10 10 10 1 10 1.2 Mary Bishai ND FD Brookhaven National Lab 1 Introduction 0.8 CP in ν SM Probability CPV and other New Physics ∆ 2 2 m = 0.05 eV 0.6 41 Current ν → ν Std. Osc. P( ) µ µ Experimental ν → ν × P( )( 5) µ Landscape e 0.4 ν → ν P( ) µ µ LBNF/DUNE ν → ν P( ) µ τ ν → ν 1-P( ) Conclusion 0.2 µ s 0 3 -2 -1 2 4 10 10 1 10 10 10 10 L/E (km/GeV) 9 / 41
Impact of Sterile Neutrinos on Long-Baseline ν Oscillations LBNF/DUNE and the Hunt Neutrino Energy (GeV) Neutrino Energy (GeV) for Leptonic CP Violation 2 -1 2 -1 10 10 1 10 10 10 1 10 1.2 Mary Bishai ND FD Brookhaven National Lab 1 Introduction 0.8 CP in ν SM Probability CPV and other New Physics ∆ 2 2 m = 0.50 eV 0.6 41 Current ν → ν Std. Osc. P( ) µ µ Experimental ν → ν × P( )( 5) µ Landscape e 0.4 ν → ν P( ) µ µ LBNF/DUNE ν → ν P( ) µ τ ν → ν 1-P( ) Conclusion 0.2 µ s 0 3 -2 -1 2 4 10 10 1 10 10 10 10 L/E (km/GeV) 10 / 41
Impact of Sterile Neutrinos on Long-Baseline ν Oscillations LBNF/DUNE and the Hunt Neutrino Energy (GeV) Neutrino Energy (GeV) for Leptonic CP Violation 2 -1 2 -1 10 10 1 10 10 10 1 10 1.2 Mary Bishai ND FD Brookhaven National Lab 1 Introduction 0.8 CP in ν SM Probability CPV and other New Physics ∆ 2 2 m = 50.00 eV 0.6 41 Current ν → ν Std. Osc. P( ) µ µ Experimental ν → ν × P( )( 5) µ Landscape e 0.4 ν → ν P( ) µ µ LBNF/DUNE ν → ν P( ) µ τ ν → ν 1-P( ) Conclusion 0.2 µ s 0 3 -2 -1 2 4 10 10 1 10 10 10 10 L/E (km/GeV) 11 / 41
CP Violation in ν SM LBNF/DUNE The charge-parity (CP) asymmetry is defined as and the Hunt for Leptonic CP Violation A cp = P ( ν µ → ν e ) − P (¯ ν µ → ¯ ν e ) Mary Bishai P ( ν µ → ν e ) + P (¯ ν µ → ¯ ν e ) Brookhaven National Lab � ∆ m 2 � A cp ∼ cos θ 23 sin 2 θ 12 sin δ 21 L + matter effects Introduction sin θ 23 sin θ 13 4 E ν CP in ν SM CPV and other W. Marciano, Z. Parsa, Nucl.Phys.Proc.Suppl. 221 (2011) New Physics Current The CP phase δ cp is unknown. CP is violated when δ cp � = 0 , π Experimental Landscape LBNF/DUNE The 4 most important things to know about ν CPV Conclusion A cp ∝ 1 / sin θ 13 ⇒ Large θ 13 makes CPV searches HARDER. A cp ∝ 1 / tan θ 23 ⇒ Large sin( θ 23 ) = smaller CPV (octant!) A cp ∝ 1 / E ν ⇒ CP asymmetries are larger at lower energies A cp ∝ L ⇒ CP asymmetries are larger at longer baselines 12 / 41
Recommend
More recommend