lattice qcd the search for bsm physics in beauty
play

Lattice QCD & the search for BSM physics in beauty Matthew - PowerPoint PPT Presentation

Lattice QCD & the search for BSM physics in beauty Matthew Wingate DAMTP, University of Cambridge Outline Quark flavour Peering through the glue to study electroweak symmetry breaking Lattice QCD Uniting the gauge theory,


  1. Lattice QCD & the search for BSM physics in beauty Matthew Wingate DAMTP, University of Cambridge

  2. Outline ✤ Quark flavour Peering through the glue to study electroweak ✦ symmetry breaking ✤ Lattice QCD Uniting the gauge theory, statistical physics, and ✦ effective field theory

  3. Quark flavour ✤ Discovery era & flavour ✤ High precision in flavour ✤ Rare decays

  4. Quark flavour in the SM e + W + ν e ✤ Only weak interactions change quark flavor � u � � t � � c d � � u d � s � b � ✤ Flavor mixing       d � V ud V us V ub d s � V cd V cs V cb s  =      b � V td V ts V tb b ✤ V is the CKM matrix. Unitarity + “rephasing” implies 4 free SM parameters (one of them a CP-violating phase)

  5. CKM matrix from Higgs couplings � u ′ i � Q i u i d i RH SU(2) singlets LH SU(2) doublets L = d ′ i R R L Interact with gauge bosons in covariant derivative ¯ R + ¯ Q i D Q i u i D u i d i D d i L i / R i / R i / L quark = L + ¯ R J µ, + u ′ i L γ µ d ′ i Gives rise to weak current weak = ¯ L The coupling to the Higgs field is not apparently diagonal in generation √ � � La ǫ ab φ † λ ij d ¯ L φ d j u ¯ b u j Q i R + λ ij Q i L quark ,φ = − 2 R + h . c . Fields may be transformed to find mass eigenstates � � � d ¯ m i d i L d i R + m i u i L u i � � L quark ,φ | vev = − u ¯ R + h . c . i Showing the weak current allows mixing between generations J µ, + L γ µ V ij CKM d j u i weak = ¯ L

  6. Physics Beyond the Standard Model ✤ Standard Model shortcomings: Higgs mass fine- tuning, dark matter, CP asymmetry & M/AM ✤ Direct production: BSM spectrum ✤ Indirect searches: BSM couplings ✤ Complementary approaches

  7. Complementarity: top quark Indirect Direct FIG. 13. The � 2 curves for the standard model fit to the elec- FIG. 12. W mass and top-quark mass measurements from the troweak precision measurements from LEP, SLD, CDF, and Fermilab collider experiments (CDF and D0). The top-mass D0 ( W mass only) and neutrino-scattering experiments as a values are from the full Tevatron data sets, with an integrated luminosity of � 100 pb � 1 . The W mass values are derived function of M top for three different Higgs-mass values span- from analyses of the first 15–20 pb � 1 only. The lines are stan- ning the interval 60 GeV/ c 2 � M Higgs � 1000 GeV/ c 2 . The num- dard model predictions for four different Higgs masses (Flat- ber of degrees of freedom is 14 (LEP Collaborations, 1995). tum, 1996). from Campagnari and Franklin, Rev. Mod. Phys. 69 , 137 (1997)

  8. Complementarity: Higgs boson Indirect inference Now out of date! Direct exclusion

  9. Complementarity in BSM searches Indirect constraints on CKM params Direct measurements (please?)

  10. Peering through the glue Model builder: Illustration from I. Shipsey, Nature 427, 591 (2004) Lattice theorist Experimentalist:

  11. Snapshot of recent work (Q2, 2011) f B → π ( q 2 ) f B , f B s B B d , B B s + ETM, PoS(LAT2009); HPQCD, PRD 76 (2007); HPQCD, PRD 73 (2006); HPQCD, PRL 92 (2004); RBC-UKQCD, PoS(LAT2007); FNAL/MILC, PRD 79 (2009) 054507; FNAL/MILC, PoS(LAT2008); HPQCD, PRD 80 (2009); FNAL/MILC, PRD 80 (2010) HPQCD, PRD 80 (2009) RBC-UKQCD, PRD 82 (2010) F B → D ∗ (1) F B → D (1) FNAL/MILC, NPB Proc Suppl (2005) FNAL/MILC, PRD 79 (2009) 014506 f K → π ˆ (0) B K f π , f K + NPLQCD, PRD 75 (2007); RBC-UKQCD, PRL 100 (2008); JLQCD, PRD 77 (2008); HPQCD, PRL 100 (2008); ETM, PRD 80 (2009); HPQCD, PRD 73 (2006); QCDSF, PoS(LAT2007); RBC-UKQCD, EPJ C69 (2010) RBC-UKQCD, PRL 100 (2008); PACS-CS, PoS(LAT2008); Aubin et al., PRD 81 (2010) PACS-CS, PRD 79 (2009); RBC-UKQCD, PRD 78 (2008); Aubin et al., PoS(LAT2008); MILC, PoS(CD09); MILC, RMP 82 (2010); JLQCD/TWQCD, PoS(LAT2009); ETM, JHEP 07 (2009); BMW, PRD 82 (2010)

  12. b ➙ s is rare in the SM W t b s s b W W ν t γ, Z For energies ≪ m W � � 10 − G F � � � H eff = √ V tb V ∗ C i ( µ ) Q i ( µ ) ts 2 i =1 Wilson Local coefficients operators b s b s g 2 G F = √ 8 m 2 2 W γ � �

  13. Dominant operators Decays SM operators e B → K ∗ γ s i σ µ ν (1 + γ 5 ) b i F µ ν Q 7 γ = 8 π 2 m b ¯ B s → φ γ e B → ( ρ / ω ) γ s b ) V − A (¯ = 8 π 2 (¯ ℓ ℓ ) V Q 9 V B → K ( ∗ ) ℓ + ℓ − B s → φ ℓ + ℓ − Q 2 = (¯ s c ) V − A (¯ c b ) V − A Λ b → Λ γ Λ b → Λ ℓ + ℓ −

  14. Long distance effects Phenomenological calculations necessary Charmonium resonances b s Khodjamirian, et al, PLB 402 (1997) Low q 2 Khodjamirian, et al, arXiv:1006.4945 Large recoil c c Buchalla & Isidori, NPB 525 (1998) High q 2 Grinstein & Pirjol, PRD 62 (2000), PRD 70 (2004) Low recoil Beylich, Buchalla, Feldmann, arXiv:1101.5118 γ, Z Weak annihilation s, d b doubly Cabibbo-suppressed W K ∗ B ρ u u Ball, Jones, Zwicky, PRD 75 (2007) γ

  15. Regions of applicability B → X s ℓ + ℓ − large recoil J/ ψ ψ ′ ✤ Short distance effects dominate at low q 2 ✤ Short distance effects dominate at high q 2 (Grinstein-Pirjol, Beylich-Buchalla- Feldmann) low recoil q 2 (GeV 2 ) Plot from E Lunghi’s CKM2008 talk

  16. Latest from LHC b B 0 → K ∗ 0 µ + µ − and B 0 s → φ µ + µ − di ff erential branching fractions Parkinson, Moriond QCD, March 2012 LHCb(1 . 0 fb − 1 ) : B 0 → K ∗ 0 µ + µ − : 900 ± 34 signal events Theory Binned theory LHCb 1.5 ] 2 LHCb /GeV Preliminary 4 c � 1 -7 [10 2 q /d 0.5 BF d 0 0 5 10 15 20 2 2 4 q [GeV / c ] s → φ µ + µ − branching fraction reported at Moriond EW Measurement of the B 0 s → φ µ + µ − : 77 ± 10 signal events LHCb(1 . 0 fb − 1 ) : B 0 s → φ µ + µ − ) = (0 . 778 ± 0 . 097( stat ) ± 0 . 061( syst ) ± 0 . 278( B )) × 10 − 6 [preliminary] B ( B 0 The most precise measurements to-date and are consistent with SM expectations [4] Chris Parkinson Rare Beauty and Charm Decays at LHCb 12 / 22

  17. Lattice QCD ✤ Field theory as statistical mechanics ✤ Mending errors ✤ [Decisions, decisions] ✤ Work in progress (rare B decay form factors)

  18. Lattice QCD in a nutshell ✤ QCD Lagrangian � � µν F a,µν − � L = − 1 γ µ ( ∂ µ − igA a µ t a ) + m q 4 F a q ψ q ψ q = L g − ψQψ Quarks on sites ✤ Break spacetime up into a grid ✤ Maintains gauge invariance Glue on links ✤ Regulates the QFT nonperturbatively ✤ Breaking of Lorentz and translational symmetries scales like the lattice spacing a p ( p =2, usually)

  19. Lattice QCD in a nutshell QFT : Imaginary-time path integral � J ( z � ) J ( z ) � = 1 � [ dψ ][ d ¯ ψ ][ dU ] J ( z � ) J ( z ) e − S E Z SFT : Sum over all microstates � J ( z � ) J ( z ) � = 1 � J ( z � ) J ( z ) e − βH � Z Tr Use the same numerical methods! Monte Carlo Calculation : Find and use field “configurations” which dominate the integral/sum

  20. Lattice QCD in a nutshell Gluonic expectation values 1 � ψ ][ dU ] Θ[ U ] e − S g [ U ] − ¯ [ dψ ][ d ¯ ψQ [ U ] ψ � Θ � = Z 1 � [ dU ] Θ[ U ] det Q [ U ] e − S g [ U ] = Z Fermionic expectation values Probability weight � � [ dU ] δ ζ Γ δ ζQ − 1 [ U ] ζ det Q [ U ] e − S g [ U ] δζ e − ¯ � ¯ � ψ Γ ψ � = δ ¯ � � ζ, ¯ ζ → 0 Determinant in probability weight difficult Quenched approximation 1) Requires nonlocal updating; 2) Matrix becomes singular Set det Q = 1 Partial quenching = different mass for valence than for sea Q − 1 det Q

  21. Lattice QCD progress ✤ Effects of light sea u+d+s quarks important ✤ Much progress using staggered quarks (+ 4th root hypothesis) ✤ Single set of lattice inputs (quark masses) ✤ [MILC Collab’n lattices] C. Davies, et al ., PRL 92 (2004)

  22. Systematic errors Source of error Controllable limit Theory Chiral pert. th. Lattice volume L ≫ 1 /m π Brute force Lattice spacing Symanzik EFT a ≪ 1 / Λ QCD NRQCD, HQET m Q ≫ 1 /a Heavy quark mass m Q < 1 /a Extra-fine, extra-improvement Fermilab m Q ≈ 1 /a Light quark mass Chiral pert. th. m π ≪ m ρ , 4 πf π

  23. Choice of discretizations ✤ Gluon field: improved actions, w/ various criteria (perturbative/nonperturbative Symanzik, RG) ✤ Light quarks: staggered, Wilson (clover), domain- wall, overlap, twisted-mass, ... ✤ Heavy quarks: static, nonrelativistic, relativistic (Fermilab (perturbative/nonperturbative), extrapolated light quarks)

  24. HPQCD approach with Stefan Meinel, Zhaofeng Liu, Eike Müller, A. Hart, R. Horgan ✤ NRQCD formulation to calculate QCD dynamics of physically heavy b quark ✤ Improved staggered light quarks ✤ Matching to MSbar scheme in pert. th. (Müller, Hart, Horgan, PRD 83 , 2011) ✤ Can work in lattice frame boosted relative to B (Horgan et al. , PRD 80 , 2009) ✤ Stat. and EFT errors mandate working at low recoil ✤ N f = 2 + 1 (MILC) configurations. No unquenched calculations of B ➙ V form factors published yet.

Recommend


More recommend