The QCD crossover from Lattice QCD July 25, 2018 Patrick Steinbrecher HotQCD collaboration
The QCD phase diagram July 25, 2018 Patrick Steinbrecher Slide 1
Quantum Chromodynamics from first principles #configurations m s /m l =27, N τ =16 Lattice QCD 12 1M 8 HISQ action 6 N σ = 4 N τ sim. at µ = 0 100k physical quarks 10k 2 light quarks 1 strange quark m s / m l = 27 135 145 155 165 175 T [MeV] m π ≃ 138 MeV everything continuum extrapolated July 25, 2018 Patrick Steinbrecher Slide 2
Chiral observables in two-flavor formulation subtracted condensate Σ sub ≡ m s (Σ u + Σ d ) − ( m u + m d )Σ s Σ f = T ∂ with ln Z V ∂ m f subtracted susceptibility � ∂ χ sub ≡ T ∂ � V m s + Σ sub ∂ m u ∂ m d χ disc is defined as χ sub without connected part July 25, 2018 Patrick Steinbrecher Slide 3
Start of the QCD crossover line: T 0 d 2 Σ sub d χ sub ≡ 0 and ≡ 0 dT 2 f 4 f 4 dT K K two crossover temperatures: T 0 (Σ sub ) and T 0 ( χ sub ) July 25, 2018 Patrick Steinbrecher Slide 4
Pseudo-critical temperatures for m l → 0: pseudo-critical temperatures converge to the chiral transition temperature T 0 c at finite quark mass it is given by maximum of O ( 4 ) universal scaling functions (Thursday talk, Sheng-Tai Li, Chiral phase transition) χ m = m 1 /δ − 1 0.4 f χ ( z ) + reg . l 0.35 χ t = m ( β − 1 ) /βδ 0.3 f ′ G ( z ) + reg . l 0.25 0.2 0.15 O(4): f χ (z) for m l → 0 0.1 f’ G (z) 0.05 χ t ∼ ∂ T Σ sub and χ t ∼ ∂ 2 µ B Σ sub 0 χ m ∼ χ sub and χ m ∼ χ disc -3 -2 -1 0 1 2 3 0 )/m l 1/( β δ ) z ∼ (T-T c July 25, 2018 Patrick Steinbrecher Slide 5
The subtracted chiral susceptibility 250 4 χ sub /f k m s /m l =27, N τ =16 12 200 8 6 150 100 50 T [MeV] 0 135 145 155 165 175 July 25, 2018 Patrick Steinbrecher Slide 6
The subtracted chiral susceptibility 250 4 χ sub /f k m s /m l =27, N τ =16 12 200 8 6 150 100 50 T [MeV] 0 135 145 155 165 175 July 25, 2018 Patrick Steinbrecher Slide 6
The 2nd µ B derivative of chiral condensate Σ sub Σ /2 -c 2 m s /m l =27, N τ =12 1.6 8 1.4 6 1.2 µ Q = µ S =0 1 0.8 0.6 HotQCD preliminary 0.4 0.2 T [MeV] 0 135 145 155 165 175 July 25, 2018 Patrick Steinbrecher Slide 7
The 1st T derivative of chiral condensate Σ sub 120 Σ /dT -T dc 0 m s /m l =27, N τ =12 6 100 8 80 60 40 HotQCD preliminary 20 T [MeV] 0 135 145 155 165 175 July 25, 2018 Patrick Steinbrecher Slide 8
The T 0 continuum extrapolation 166 T c (µ B =0) [MeV] χ disc 164 χ sub 162 160 Σ sub 2 Σ sub 158 ∂ µ B 156 2 χ disc ∂ µ B 154 HotQCD preliminary 156.5 ± 1.5 MeV 152 2 1/N τ 150 c N N N N o n = = = = τ τ τ τ t 1 1 8 6 i n 6 2 u u m July 25, 2018 Patrick Steinbrecher Slide 9
Crossover temperature T 0 170 T 0 [MeV] 165 160 155 150 HotQCD preliminary 145 140 Σ sub χ disc χ sub ∂ µ B ∂ µ B Σ sub , Bonati 2015 χ tot , Bazavov 2012 Σ sub , Borsanyi 2010 2 Σ 2 χ s d u i b s c July 25, 2018 Patrick Steinbrecher Slide 10
The QCD crossover at µ � = 0 d 2 Σ sub ( T , µ B ) d χ disc ( T , µ B ) ≡ 0 and ≡ 0 dT 2 f 4 f 4 dT K K need Taylor expansion in T and µ B around ( T 0 , 0 ) July 25, 2018 Patrick Steinbrecher Slide 11
Taylor expansion in chemical potentials (just notation) simplest case µ Q = µ S = 0 subtracted condensate � ∞ n = ∂ Σ sub / f 4 c Σ Σ sub � � n µ n c Σ K = n ! ˆ with � B µ n f 4 ∂ ˆ � B K � n = 0 µ = 0 disconnected susceptibility � c χ ∞ n = ∂χ disc / f 4 χ disc � c χ � n µ n K = n ! ˆ with � B µ n f 4 ∂ ˆ � B K � n = 0 µ = 0 July 25, 2018 Patrick Steinbrecher Slide 12
Coefficients for a strangeness neutral system 0 30 Σ /2 Σ /dT c 2 T dc 2 m s /m l =27, N τ =12 m s /m l =27, N τ =12 -0.2 8 6 20 6 8 -0.4 10 -0.6 n S =0, n Q /n B =0.4 -0.8 0 -1 -10 n S =0, n Q /n B =0.4 -1.2 -20 -1.4 HotQCD preliminary HotQCD preliminary T [MeV] T [MeV] -1.6 -30 135 145 155 165 175 135 145 155 165 175 15 1000 χ /2 c 2 χ /dT m s /m l =27, N τ =12 T dc 2 m s /m l =27, N τ =12 8 6 10 6 8 500 5 HotQCD preliminary HotQCD preliminary 0 0 n S =0, n Q /n B =0.4 -5 n S =0, n Q /n B =0.4 -500 -10 T [MeV] T [MeV] -15 -1000 135 145 155 165 175 135 145 155 165 175 July 25, 2018 Patrick Steinbrecher Slide 13
The curvature of the crossover line � 2 � 4 � µ B � µ B T c ( µ B ) + O ( µ 6 = 1 − κ 2 − κ 4 B ) T 0 T 0 T 0 Taylor expansion in µ and T of: d χ disc ( T , µ B ) = ( ... ) µ 2 B + ( ... ) µ 4 B + ... = 0 f 4 dT K 0.025 has to be zero order by order n S =0, n Q /n B =0.4, m s /m l =27 0.02 0.015 ∂ c χ � ( T 0 , 0 ) − 2 c χ � 0.01 T 0 2 � 2 � χ disc : κ 2 1 ∂ T ( T 0 , 0 ) HotQCD preliminary � 0.005 κ 4 κ 2 = 2 T 2 ∂ 2 c χ � 0 0 0 � ∂ T 2 � ( T 0 , 0 ) -0.005 2 1/N τ -0.01 0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 July 25, 2018 Patrick Steinbrecher Slide 14
The QCD crossover line STAR: arxiv:1701.07065 ALICE: arxiv:1408.6403 170 4 ) T c [MeV] crossover line: O(µ B 165 constant: ε s 160 freeze-out: STAR ALICE 155 150 145 140 n S =0, n Q /n B =0.4 HotQCD preliminary 135 µ B [MeV] 130 0 50 100 150 200 250 300 350 400 July 25, 2018 Patrick Steinbrecher Slide 15
The curvature κ n for strangeness neutral system 0.02 0.015 κ 2 0.01 n S =0, n Q /n B =0.4 0.005 0 κ 4 HotQCD preliminary -0.005 -0.01 Σ sub χ disc Σ sub , Bellwied 2015 July 25, 2018 Patrick Steinbrecher Slide 16
The crossover line � 2 � 4 T c ( µ X ) � µ X � µ X = 1 − κ X − κ X + O ( µ 6 X ) 2 4 T 0 T 0 T 0 0.040 0.030 HotQCD preliminary X 0.020 κ 2 Bonati 2018: X = B , µ S = 0 X κ 4 κ 2 = 0 . 0145 ( 25 ) 0.010 0.000 -0.010 X = B B S I Q n S =0 n Q /n B =0.4 July 25, 2018 Patrick Steinbrecher Slide 17
Fluctuations along the QCD crossover T c ( µ B ) Baryon-number fluctuations � σ 2 ∞ c B 1 ∂ ln Z 1 ∂ ln Z � � n µ n c B B = = n ! ˆ with n = � B Vf 3 Vf 3 µ 2 Vf 3 µ n + 2 ∂ ˆ � ∂ ˆ K K B K � n = 0 B µ = 0 σ 2 B couples to condensate − → diverges at a critical point study increase along the crossover line � 2 � 4 σ 2 B ( T c ( µ B ) , µ B ) − σ 2 B ( T 0 , 0 ) � µ B � µ B = λ 2 + λ 4 + · · · σ 2 T 0 T 0 B ( T 0 , 0 ) July 25, 2018 Patrick Steinbrecher Slide 18
Baryon-number fluctuations � along T c ( µ B ) 1.2 2 (T c ( µ B ), µ B )/ σ B 2 (T 0 ,0) - 1 σ B 1 4 ) O( µ B n S =0, n Q /n B =0.4 0.8 2 ) O( µ B 0.6 HRG 0.4 HotQCD preliminary 0.2 0 µ B [MeV] -0.2 0 50 100 150 200 250 300 July 25, 2018 Patrick Steinbrecher Slide 19
Susceptibility fluctuations � along T c ( µ B ) 0.6 100 4 χ disc (T c ( µ B ), µ B )/ χ disc (T 0 ,0) - 1 χ disc /f k µ B = 0.0 MeV 0.4 125.0 MeV 80 200.0 MeV HotQCD preliminary 0.2 60 0 HotQCD preliminary 40 -0.2 4 ) O( µ B n S =0, n Q /n B =0.4 6 ) n S =0, n Q /n B =0.4 N τ =8, O( µ B 2 ) O( µ B 20 -0.4 µ B [MeV] T [MeV] -0.6 0 0 50 100 150 200 250 300 135 145 155 165 175 185 195 σ 2 B and χ disc show no indication for a narrowing crossover July 25, 2018 Patrick Steinbrecher Slide 20
Critical point from Taylor expansions e.g. expansion of the pressure around µ B = 0 (for µ Q ≡ µ S ≡ 0) ∂ n ln Z � P 1 1 � n ! χ B µ n χ B � T 4 = n ˆ B , n = � µ n VT 3 ∂ ˆ � B µ B = 0 n analysis of convergence radius can determine bound on the location of a critical point: 1 / 2 1 / 2 � � � � ( 2 n + 2 )( 2 n + 1 ) χ B 2 n ( 2 n − 1 ) χ B � � � � r χ r P 2 n 2 n 2 n = , 2 n = � � � � χ B χ B � � � � 2 n + 2 2 n + 2 � � � � only if coefficients are positive for all n ≥ n 0 if not → no critical point on real axis July 25, 2018 Patrick Steinbrecher Slide 21
Critical point from Taylor expansions 9 9 χ 2017: lower bound for r 4 χ 8 8 estimator r 2 χ D’Elia et al., 2016, r 4 crit /T 7 7 Datta et al., 2016 χ -- estimator for µ B Fodor, Katz, 2004 χ ,HRG 6 6 r 6 5 5 χ ,HRG 4 4 r 4 3 3 2 2 χ ,HRG r n r 2 1 1 disfavored region for the location of a critical point 0 0 135 135 140 140 145 145 150 150 155 155 T [MeV] July 25, 2018 Patrick Steinbrecher Slide 22
Summary crossover starts at T 0 = 156 . 5 ± 1 . 5 MeV crossover curvature for strangeness neutral system � 2 � 4 � � T c ( µ B ) + O ( µ 6 = 1 − κ 2 µ B − κ 4 µ B B ) T 0 T 0 T 0 κ 2 = 0 . 0123 ± 0 . 003 κ 4 = 0 . 000131 ± 0 . 0041 for µ B < 250 MeV and n s = 0 , n Q / n B = 0 . 4 crossover along const. entropy density and energy density chemical freeze-out might be close to crossover no indication for critical point July 25, 2018 Patrick Steinbrecher Slide 23
Thank you for your attention! July 25, 2018 Patrick Steinbrecher Slide 24
Recommend
More recommend