Lasso Regularization Paths for NARMAX Models via Coordinate Descent Antˆ onio H. Ribeiro, Luis A. Aguirre Universidade Federal de Minas Gerais (UFMG), Brazil American Control Conference, June 29, 2018 Milwaukee, U.S. A. H. Ribeiro, L. A. Aguirre (UFMG) Lasso Regularization Paths for NARMAX ACC 2018 1 / 18
Problem Statement Figure: The system identification problem. A. H. Ribeiro, L. A. Aguirre (UFMG) Lasso Regularization Paths for NARMAX ACC 2018 2 / 18
Prediction Error Methods Framework Cost Function observed � � ���� 2 � � � V ( θ ) = y [ k ] − ˆ y θ [ k ] . � � � �� � k predicted A. H. Ribeiro, L. A. Aguirre (UFMG) Lasso Regularization Paths for NARMAX ACC 2018 3 / 18
Linear-in-the-Parameters Model Linear-in-the-parameter models: basis functions � �� � � y θ [ k ] = ˆ θ i · x i ( y [ k − 1] , u [ k − 1]) , i Ordinary least-squares formulation: � y θ [ k ] � 2 ⇒ min θ � y − X θ � 2 min � y [ k ] − ˆ 2 θ k A. H. Ribeiro, L. A. Aguirre (UFMG) Lasso Regularization Paths for NARMAX ACC 2018 4 / 18
L 1 penalty The Lasso θ � y − X θ � 2 min 2 + λ � θ � 1 , Figure: Lasso interpretation (Tibshirani, 1996). Tibshirani, R. (1996). Regression shrinkage and selection via the LASSO. Journal of the Royal Statistical Society. Series B (Methodological) , pages 267–288. A. H. Ribeiro, L. A. Aguirre (UFMG) Lasso Regularization Paths for NARMAX ACC 2018 5 / 18
Literature Review Solving Lasso Problem Quadratic Programming; Tibshirani, R. (1996). Regression shrinkage and selection via the LASSO. Journal of the Royal Statistical Society. Series B (Methodological) , pages 267–288. A. H. Ribeiro, L. A. Aguirre (UFMG) Lasso Regularization Paths for NARMAX ACC 2018 6 / 18
Literature Review Solving Lasso Problem Quadratic Programming; LARS (Least Angle Regression) algorithm; Efron, B., Hastie, T., Johnstone, I., and Tibshirani, R. (2004). Least angle regression. The Annals of Statistics , 32(2):407–499. A. H. Ribeiro, L. A. Aguirre (UFMG) Lasso Regularization Paths for NARMAX ACC 2018 6 / 18
Literature Review Solving Lasso Problem Quadratic Programming; LARS (Least Angle Regression) algorithm; Coordinate Descent ; Friedman, J., Hastie, T., H¨ ofling, H., and Tibshirani, R. (2007). Pathwise coordinate optimization. The Annals of Applied Statistics , 1(2):302–332. Friedman, J., Hastie, T., and Tibshirani, R. (2009). Glmnet: Lasso and elastic-net regularized generalized linear models. R package version , 1(4). Friedman, J., Hastie, T., and Tibshirani, R. (2010). Regularization paths for generalized linear models via coordinate descent. Journal of statistical software , 33(1):1. A. H. Ribeiro, L. A. Aguirre (UFMG) Lasso Regularization Paths for NARMAX ACC 2018 6 / 18
Coordinate Descent Algorithm One-at-a-time coordinate optimization: θ j ← arg θ j min � y − X θ � 2 2 + λ � θ � 1 , Figure: Soft threshold operator A. H. Ribeiro, L. A. Aguirre (UFMG) Lasso Regularization Paths for NARMAX ACC 2018 7 / 18
Coordinate Descent Algorithm One-at-a-time coordinate optimization: r 1 �� � � �� � � T x j ; λ θ j ← � x j � 2 S ( y − X θ ) + x j θ j , Figure: Soft threshold operator A. H. Ribeiro, L. A. Aguirre (UFMG) Lasso Regularization Paths for NARMAX ACC 2018 7 / 18
Coordinate Descent Algorithm Optimization Problem θ � y − X θ � 2 min 2 + λ � θ � 1 , Repeat: � � 1 1 θ j ← ( r + x j θ j ) T x j ; λ � x j � 2 S 2 Update r = ( y − X θ ) 3 Next j . A. H. Ribeiro, L. A. Aguirre (UFMG) Lasso Regularization Paths for NARMAX ACC 2018 8 / 18
Coordinate Descent Algorithm Optimization Problem θ � y − X θ � 2 min 2 + λ � θ � 1 , Repeat: � � 1 1 θ j ← ( r + x j θ j ) T x j ; λ → O ( N ) � x j � 2 S 2 Update r = ( y − X θ ) → O ( N ) 3 Next j . A. H. Ribeiro, L. A. Aguirre (UFMG) Lasso Regularization Paths for NARMAX ACC 2018 8 / 18
NARMAX model Assuming that: r [ k ] = y [ k ] − ˆ y θ [ k ] p � ˆ y θ [ k ] = θ i · x i ( y [ k − 1] , u [ k − 1] , r [ k − 1] ) . � �� � � �� � i =1 measured values noise term Estimated parameter: ˆ θ = arg θ min � y − X ( y , u , r ) θ � 2 2 . A. H. Ribeiro, L. A. Aguirre (UFMG) Lasso Regularization Paths for NARMAX ACC 2018 9 / 18
Extended Least Squares Optimization Problem θ � y − X ( y , u , r ) θ � 2 min 2 , Repeat: � � ( i +1) ← arg θ min 2 ˆ � � � y − X ( y , u , r ( i ) ) θ θ 1 � r ( i +1) ← y − X ( y , u , r ( i ) ) θ ( i +1) 2 ˆ 3 i ← i + 1. A. H. Ribeiro, L. A. Aguirre (UFMG) Lasso Regularization Paths for NARMAX ACC 2018 10 / 18
Coordinate Descent Algorithm (Revisited) Optimization Problem θ � y − X ( y , u , r ) θ � 2 min 2 + λ � θ � 1 , Repeat: Update x j if it depends on r 1 � � 2 θ + 1 ( r + x j θ j ) T x j ; λ j ← � x j � 2 S 3 Update r = ( y − X θ ) 4 Next j . A. H. Ribeiro, L. A. Aguirre (UFMG) Lasso Regularization Paths for NARMAX ACC 2018 11 / 18
Coordinate Descent Algorithm (Revisited) Optimization Problem θ � y − X ( y , u , r ) θ � 2 min 2 + λ � θ � 1 , Repeat: Update x j if it depends on r → O ( N ) 1 � � 2 θ + 1 ( r + x j θ j ) T x j ; λ j ← � x j � 2 S → O ( N ) 3 Update r = ( y − X θ ) → O ( N ) 4 Next j . A. H. Ribeiro, L. A. Aguirre (UFMG) Lasso Regularization Paths for NARMAX ACC 2018 11 / 18
Example I The dataset was generated from the linear system: y [ k ] = 0 . 5 y [ k − 1] − 0 . 5 u [ k − 1] + 0 . 5 v [ k − 1] + v [ k ] . A. H. Ribeiro, L. A. Aguirre (UFMG) Lasso Regularization Paths for NARMAX ACC 2018 12 / 18
Example I The dataset was generated from the linear system: y [ k ] = 0 . 5 y [ k − 1] − 0 . 5 u [ k − 1] + 0 . 5 v [ k − 1] + v [ k ] . We try to fit the following linear model to the training data (30 regressors): 10 10 10 � � � y [ k ] = θ i y [ k − i ] + θ ( i +10) u [ k − i ] + θ ( i +20) r [ k − i ] . i =1 i =1 i =1 A. H. Ribeiro, L. A. Aguirre (UFMG) Lasso Regularization Paths for NARMAX ACC 2018 12 / 18
Example I 0.8 y [ k − 1] 0.4 v [ k − 1] 0.0 θ -0.4 u [ k − 1] -0.8 10 − 1 10 − 2 10 − 3 10 − 4 λ Figure: Estimated parameter vector θ as a function of λ . Estimated system: y [ k ] = 0 . 48 y [ k − 1] − 0 . 50 u [ k − 1] + 0 . 44 v [ k − 1]. A. H. Ribeiro, L. A. Aguirre (UFMG) Lasso Regularization Paths for NARMAX ACC 2018 13 / 18
Example II The dataset was generated from the nonlinear system (Chen, et. al., 1990): (0 . 8 − 0 . 5exp( − y [ k − 1] 2 ) y [ k − 1] + u [ k − 1] − y [ k ] = (0 . 3 + 0 . 9exp( − y [ k − 1] 2 ) y [ k − 2] + 0 . 2 u [ k − 2] + 0 . 1 u [ k − 1] u [ k − 2] + 0 . 1 v [ k − 1] + 0 . 3 v [ k − 2] + v [ k ] , And, we fit a polynomial model with degree 2 and 44 regressors to it. S. Chen, S. A. Billings, and P. M. Grant (1990). Non-linear system identification using neural networks International Journal of Control , vol. 51, no. 6, pp. 1191–1214, 1990. A. H. Ribeiro, L. A. Aguirre (UFMG) Lasso Regularization Paths for NARMAX ACC 2018 14 / 18
Example II 1.2 0.8 0.4 0.0 θ -0.4 -0.8 -1.2 10 0 10 − 1 10 − 2 10 − 3 10 − 4 λ Figure: Estimated parameter vector θ as a function of λ . For this optimal λ the mean absolute error in the validation set is 1.03 and the model includes the regressors y [ k − 1], u [ k − 1], y [ k − 3], y [ k − 2], u [ k − 2], r [ k − 1], r [ k − 2], y [ k − 1] y [ k − 2], u [ k − 1] u [ k − 2], y [ k − 3] r [ k − 1], y [ k − 2] u [ k − 2]. A. H. Ribeiro, L. A. Aguirre (UFMG) Lasso Regularization Paths for NARMAX ACC 2018 15 / 18
Related Work H. Wang, G. Li, and C.-L. Tsai (2007). Regression Coefficient and Autoregressive Order Shrinkage and Selection Via the Lasso. Journal of the Royal Statistical Society. Series B (Statistical Methodology) , vol. 69, no. 1, pp. 63–78, 2007. Y. J. Yoon, C. Park, and T. Lee (2013). Penalized regression models with autoregressive error terms. Journal of Statistical Computation and Simulation , vol. 83, no. 9, pp. 1756–1772, Sep. 2013. A. H. Ribeiro, L. A. Aguirre (UFMG) Lasso Regularization Paths for NARMAX ACC 2018 16 / 18
Conclusion 1 Timmings; A. H. Ribeiro, L. A. Aguirre (UFMG) Lasso Regularization Paths for NARMAX ACC 2018 17 / 18
Conclusion 1 Timmings; 2 Convergence; A. H. Ribeiro, L. A. Aguirre (UFMG) Lasso Regularization Paths for NARMAX ACC 2018 17 / 18
Conclusion 1 Timmings; 2 Convergence; 3 Scaling; A. H. Ribeiro, L. A. Aguirre (UFMG) Lasso Regularization Paths for NARMAX ACC 2018 17 / 18
Conclusion 1 Timmings; 2 Convergence; 3 Scaling; 4 Elastic net ; A. H. Ribeiro, L. A. Aguirre (UFMG) Lasso Regularization Paths for NARMAX ACC 2018 17 / 18
Acknoledgments The implementation is available at: https://github.com/antonior92/NarmaxLasso.jl A. H. Ribeiro, L. A. Aguirre (UFMG) Lasso Regularization Paths for NARMAX ACC 2018 18 / 18
Recommend
More recommend