laboratoire kastler brossel coll ege de france ens upmc
play

Laboratoire Kastler Brossel Coll` ege de France, ENS, UPMC, CNRS - PowerPoint PPT Presentation

Laboratoire Kastler Brossel Coll` ege de France, ENS, UPMC, CNRS Anomalous momentum diffusion of strongly interacting bosons in optical lattices Fabrice Gerbier J er ome Beugnon Rapha el Bouganne Manel Bosch Aguilera Alexis


  1. Laboratoire Kastler Brossel Coll` ege de France, ENS, UPMC, CNRS Anomalous momentum diffusion of strongly interacting bosons in optical lattices Fabrice Gerbier J´ erˆ ome Beugnon Rapha¨ el Bouganne Manel Bosch Aguilera Alexis Ghermaoui Humboldt Kolleg, Vilnius, August 1st 2018

  2. Ytterbium team at LKB M. Bosch J. Beugnon R. Bouganne E. Soave FG Aguilera (now Innsbruck) Former members : Q. Beaufils A. Dareau D. Doering A. Ghermaoui M. Scholl E. Soave Some recent works : • Revealing the Topology of Quasicrystals with a Diffraction Experiment [Dareau et al. , Phys. Rev. Lett. 119 , 21530 (2017) . • Clock spectroscopy of interacting bosons in deep optical lattices [Bouganne et al. , New J. Phys. 19 , 113006 (2017) .

  3. Superfluid-Mott insulator transition for bosons Optical lattices : interference pattern can be used to trap atoms in a periodic structure y Bosons in the Bose-Hubbard regime : 1 Quantum tunneling favor delocalization √ 2 J 2 Repulsive on-site interactions favor localization J U Quantum phase transition from a superfluid, Bose-condensed 3 U ground state to a Mott insulator x Greiner et al. , Nature 2002. Energy/Temperature scales : nanoKelvin Time scales ∼ 10 ms

  4. Quantifying phase coherence in a bosonic gas Time-of-flight interferences : essentially a free flight revealing the momentum distribution � � K = M r n tof ( r , r ) ≈ n = G ( K ) S ( K ) � t • smooth “Wannier” enveloppe G ( K ) i,j e i K · ( r j −· r i ) � ˆ a † • structure factor S ( K ) = � i a j � Single-particle density matrix : ρ (1) ( r , r ′ ) = � ˆ Ψ † ( r )ˆ Ψ( r ′ ) � Contrast of interference fringes when two matter waves overlap. a † Lattice version : C ( i, j ) = � ˆ i ˆ a j � Momentum distribution n ( k ) : Fourier transform of ρ (1) Lattice version : S ( K )

  5. Quantum-degenerate 174 Yb atoms in a 3D optical lattice How does spontaneous emission destroy the spatial coherences initially present in the superfluid ? Absorption/spontaneous emission cycles with rate γ sp

  6. Momentum diffusion in resonant atom-light interaction Momentum diffusion : • Random momentum kicks after SE ω L , k L k 1 • Random walk in momentum space: √ k 2 ∆ k = 2 Dt D : Diffusion coefficient k 3 • Central role in laser cooling : limit D temperature T ∝ friction Equivalent point of view : destruction of spatial coherences ρ (1) ( r , r ′ ) • Spatial correlations beyond λ 0 / (2 π ) strongly suppressed [ Pfau et al. , PRL 1994 ] • Exponential decay in time for given r , r ′ • Interpretation : Modern version of Heisenberg’s microscope continuous, weak measurements of the atom position [ Marsteiner et al. , PRL 1996 ]

  7. Anomalous momentum diffusion Basic analysis : monitor n k =0 ≡ n 0 (proxy for condensed fraction) • Exponential (linear ...) decay at short times t ≤ t cross • Algebraic decay at long times: ∆ k ∼ t α , n k =0 ∼ 1 /t 2 α with α < 1 / 2 • Normal momentum diffusion : exponential decay

  8. A more precise analysis of the momentum distribution � C R e i k · R S 0 ( k ) = R ∈ ❩ 2 � � ≈ 1 + C nn cos( k x d ) + cos( k y d ) + · · · Nearest-neighbor correlation function : � a † C nn = � ˆ r i ˆ a r i + e x � r i

  9. Continuous, weak measurement theory Dissipative Bose-Hubbard model : � ˆ d ρ = 1 n i − 1 ρ − 1 − γ ˆ ˆ � n 2 n 2 � � � � � dt ˆ H, ˆ ρ L ρ ˆ , L ρ ˆ = ˆ n i ˆ ρ ˆ 2 ˆ i ˆ 2 ˆ ρ ˆ i . i � i Poletti et al. , PRL 2012, PRL 2013 (Kollath/Georges group) See also Pichler et al. , PRA 2010 (Zoller group), Yanay and Mueller, PRA 2012 N bosons in two wells L, R . Fock basis : | n � = | n L = n, n R = N − n � Populations : ρ n,n = � n | ˆ ρ | n � Coherences : ρ m,n = � m | ˆ ρ | n � , m � = n • Fock states are pointer states: � n | ˆ L [ˆ ρ ] | n � = 0 2 ( n − m ) 2 ρ m,n • Coherences decay : � m | ˆ ρ ] | n � = − 1 L [ˆ • Role of tunneling : partial restoration of short-range spatial coherence = ⇒ allows relaxation of populations

  10. Effective Pauli master equation in the decoherent regime Adiabatic elimination of fast variables (coherences) Effective master equation for the probability p n to find n atoms per site ( ∆ t ≫ γ − 1 ) : p n ≡ ∆ p n ˙ = W n +1 p n +1 + W n − 1 p n − 1 − 2 W n p n ∆ t Poletti et al. , PRL 2012, PRL 2013 1 . 0 0 . 8 0 . 6 p ( n ) 0 . 4 0 . 2 0 . 0 0 2 4 6 8 n Three successive stages in the relaxation : 1 t � γ − 1 : initial relaxation of coherences (not described by the master equation), 2 γ − 1 < γt ≪ t ∗ : algebraic regime with slow decay of populations, 3 t � t ∗ : final relaxation to the (infite temperature) steady state.

  11. From regular to anomalous diffusion n − N Mapping to a Fokker-Planck equation for N ≫ 1 : n → x = 2 , p n → Np ( x ) N ∂p ( x, t ) = ∂ D ( x ) ∂ � � ∂x p ( x, t ) ∂t ∂x � � 1 x Scaling solution: p ( x ) = τ β f u = τ β 1 If D ∼ x − η , scaling exponent β = 2+ η � γ ≫ NU : D ≈ 2 J 2 J 2 γ 1 � γ ≪ NU : D ≈ ( NU ) 2 × � 2 γ x 2 • “Quantum Zeno effect” • “Interaction-induced impeding of decoherence” Patil, Chakram, Vengalattore, PRL 2015 • D uniform : • Power-law tail : regular diffusion Anomalous (sub-)diffusion • Scaling exponent β = 1 / 2 • Scaling exponent β = 1 / 4 Poletti et al. , PRL 2012, PRL 2013

  12. Coherence decay exponents versus lattice depth V ⊥ Phase coherence, scaling regime : n = 2 U/J = 20 10 − 1 γ/U = 0 1 a † C nn C nn = � ˆ i ± 1 ˆ a i � ∝ t 2 β � γ → 0 10 − 2 c 0 10 0 10 1 10 2 C nn ≈ √ 2 zγt if n → ∞ γt Comparison with experimental decay exponents of C nn :

  13. Direct observation of Fock space dynamics using three-body losses 1 . 0 0 . 8 0 . 6 p ( n ) 0 . 4 0 . 2 0 . 0 0 2 4 6 8 n V ⊥ = 8 . 8 E R 0 . 15 0 . 10 p 3 0 . 05 0 . 00 10 − 3 10 − 2 10 − 1 10 0 γ sp t diss

  14. Conclusion Decoherence of a bosonic many-body system under spontaneous emission Main message : Interactions slow down decoherence √ • Observation of anomalous momentum diffusion : ∆ k ∼ t 1 / 4 instead of ∆ k ∼ t • Interpretation as a signature of an underlying anomalous diffusion in Fock space • Direct observation of Fock space dynamics using three-body losses • Why is the “Poletti at al. ” model working ? Many effects left out : dipole-dipole interactions, superradiance, interband transitions ... • Numerical study of XXZ chains [ Cai and Barthel, PRL 2013 ] under dephasing : similar power-law slowdown of behavior as we observed (but not the Ising chain) Universality classes also relevant for non-equilibrium phenomena/decoherence ?

  15. Loss dynamics after freezing • Same experiment as before : illumination with near-resonant laser for t diss • then raise the horizontal lattice to “freeze” the density distribution • wait for t hold : three-body losses empty sites with n ≥ 3 • monitor losses to extract p ( n ≥ 3) SF 5Er – t diss = 2500 µs 30000 25000 20000 15000 0 1000 2000 3000 4000 5000 t [ms] Solid lines : fit with known loss time constants to extract N 3 = 3 p (3) , etc ...

  16. Evolution of triply-occupied sites V ⊥ = 5 E R 15000 10 4 12500 10000 N 3 N 3 7500 5000 2500 10 3 0 10 − 1 10 0 0 1 2 3 4 5 6 t diss (Γ − 1 sp ) Γ sp t diss V ⊥ = 9 E R 15000 10 4 12500 10000 N 3 N 3 7500 5000 2500 10 3 0 10 − 1 10 0 0 1 2 3 4 5 6 t diss (Γ − 1 sp ) Γ sp t diss

  17. Excited band populations From fits to momentum profiles :

Recommend


More recommend