exploring scale invariance in flatland
play

Exploring Scale Invariance in Flatland Jean Dalibard Collge de - PowerPoint PPT Presentation

Exploring Scale Invariance in Flatland Jean Dalibard Collge de France and Laboratoire Kastler Brossel Solvay mee*ng, Brussels, Feb. 18-20 2019 Scale invariance A concept that was introduced in the 70s in high energy physics Can there be


  1. Exploring Scale Invariance in Flatland Jean Dalibard Collège de France and Laboratoire Kastler Brossel Solvay mee*ng, Brussels, Feb. 18-20 2019

  2. Scale invariance A concept that was introduced in the 70’s in high energy physics Can there be physical systems with no intrinsic energy/length scale? Need to explain the behavior of e - - nucleon sca6ering cross-sec8ons This concept later found many applicaJons in physics, maths, biology, etc. Phase transiJons and renormalizaJon group Fractals 2

  3. <latexit sha1_base64="(nul )">(nul )</latexit> <latexit sha1_base64="(nul )">(nul )</latexit> <latexit sha1_base64="(nul )">(nul )</latexit> <latexit sha1_base64="(nul )">(nul )</latexit> <latexit sha1_base64="(nul )">(nul )</latexit> <latexit sha1_base64="(nul )">(nul )</latexit> <latexit sha1_base64="(nul )">(nul )</latexit> <latexit sha1_base64="(nul )">(nul )</latexit> <latexit sha1_base64="(nul )">(nul )</latexit> <latexit sha1_base64="(nul )">(nul )</latexit> <latexit sha1_base64="(nul )">(nul )</latexit> <latexit sha1_base64="(nul )">(nul )</latexit> <latexit sha1_base64="(nul )">(nul )</latexit> <latexit sha1_base64="(nul )">(nul )</latexit> <latexit sha1_base64="(nul )">(nul )</latexit> <latexit sha1_base64="(nul )">(nul )</latexit> <latexit sha1_base64="(nul )">(nul )</latexit> <latexit sha1_base64="(nul )">(nul )</latexit> <latexit sha1_base64="(nul )">(nul )</latexit> <latexit sha1_base64="(nul )">(nul )</latexit> Scale invariance in a gas of particles DilataJon operaJon acJng on space and Jme variables t → t/ λ 2 r → r / λ In such a scaling, the velocity and the kineJc energy become: E kin → λ 2 E kin v → λ v Z The acJon is therefore invariant in this transformaJon E kin d t ∝ If there is no interac8on, end of the story: the ideal gas is scale-invariant, both in classical and quantum physics �3

  4. Outline of this talk Explore the expected consequences + find some unexpected ones for the case of an interacJng 2D Bose gas 1. Scale/conformal invariance in a cold atomic gas 2. Exploring experimentally dynamical probes of scale invariance 3. Two-dimensional breathers 4

  5. <latexit sha1_base64="(nul )">(nul )</latexit> <latexit sha1_base64="(nul )">(nul )</latexit> <latexit sha1_base64="(nul )">(nul )</latexit> <latexit sha1_base64="(nul )">(nul )</latexit> <latexit sha1_base64="(nul )">(nul )</latexit> <latexit sha1_base64="(nul )">(nul )</latexit> <latexit sha1_base64="(nul )">(nul )</latexit> <latexit sha1_base64="(nul )">(nul )</latexit> <latexit sha1_base64="(nul )">(nul )</latexit> <latexit sha1_base64="(nul )">(nul )</latexit> <latexit sha1_base64="(nul )">(nul )</latexit> <latexit sha1_base64="(nul )">(nul )</latexit> <latexit sha1_base64="(nul )">(nul )</latexit> <latexit sha1_base64="(nul )">(nul )</latexit> <latexit sha1_base64="(nul )">(nul )</latexit> <latexit sha1_base64="(nul )">(nul )</latexit> <latexit sha1_base64="(nul )">(nul )</latexit> <latexit sha1_base64="(nul )">(nul )</latexit> <latexit sha1_base64="(nul )">(nul )</latexit> <latexit sha1_base64="(nul )">(nul )</latexit> <latexit sha1_base64="(nul )">(nul )</latexit> <latexit sha1_base64="(nul )">(nul )</latexit> <latexit sha1_base64="(nul )">(nul )</latexit> <latexit sha1_base64="(nul )">(nul )</latexit> <latexit sha1_base64="(nul )">(nul )</latexit> <latexit sha1_base64="(nul )">(nul )</latexit> <latexit sha1_base64="(nul )">(nul )</latexit> The interacJng case E kin → λ 2 E kin Since behaves as , an interacJng system will be E kin scale-invariant if the interacJon energy also saJsfies : E int → λ 2 E int r → r / λ 1 • InteracJon potenJal varying as V ( r i − r j ) ∝ | r i − r j | 2 • Fermi gas in the unitary regime (not fully obvious, look at Bethe-Peierls boundary condiJons) • Contact interacJon in two dimensions (Flatland): g δ ( r ) → g δ ( r / λ ) = λ 2 g δ ( r ) r → r / λ BUT… 2D contact interac8on is singular when treated in quantum mechanics �5

  6. <latexit sha1_base64="(nul )">(nul )</latexit> <latexit sha1_base64="(nul )">(nul )</latexit> <latexit sha1_base64="(nul )">(nul )</latexit> <latexit sha1_base64="(nul )">(nul )</latexit> <latexit sha1_base64="(nul )">(nul )</latexit> <latexit sha1_base64="(nul )">(nul )</latexit> <latexit sha1_base64="(nul )">(nul )</latexit> <latexit sha1_base64="(nul )">(nul )</latexit> <latexit sha1_base64="(nul )">(nul )</latexit> <latexit sha1_base64="(nul )">(nul )</latexit> <latexit sha1_base64="(nul )">(nul )</latexit> <latexit sha1_base64="(nul )">(nul )</latexit> <latexit sha1_base64="(nul )">(nul )</latexit> <latexit sha1_base64="(nul )">(nul )</latexit> <latexit sha1_base64="(nul )">(nul )</latexit> <latexit sha1_base64="(nul )">(nul )</latexit> <latexit sha1_base64="(nul )">(nul )</latexit> <latexit sha1_base64="(nul )">(nul )</latexit> <latexit sha1_base64="(nul )">(nul )</latexit> <latexit sha1_base64="(nul )">(nul )</latexit> <latexit sha1_base64="(nul )">(nul )</latexit> <latexit sha1_base64="(nul )">(nul )</latexit> <latexit sha1_base64="(nul )">(nul )</latexit> <latexit sha1_base64="(nul )">(nul )</latexit> Classical field approach to the 2D Bose gas Describe the gas by a classical field obeying the Gross-Pitaevskii equaJon ψ ( r , t ) Energy of the gas: E ( ψ ) = E kin ( ψ ) + E int ( ψ ) 1 . 5 E kin ( ψ ) = ~ 2 Z | r ψ | 2 1 2 m 0 . 5 E int ( ψ ) = ~ 2 1 Z | ψ | 4 0 2 m ˜ g 0 interacJon strength − 1 y g : ˜ − 0 . 5 0 0 . 5 1 − 1 x No singularity at the classical field level In 2D, the interacJon strength is dimensionless: no length scale, nor energy scale ˜ g associated with the interacJons, as required for scale invariance 6

Recommend


More recommend