l ecture 4 d ynamical s ystems 3
play

L ECTURE 4: D YNAMICAL S YSTEMS 3 I NSTRUCTOR : G IANNI A. D I C ARO - PowerPoint PPT Presentation

15-382 C OLLECTIVE I NTELLIGENCE S18 L ECTURE 4: D YNAMICAL S YSTEMS 3 I NSTRUCTOR : G IANNI A. D I C ARO EQUILIBRIUM A state " is said an equilibrium state of a dynamical system = () , if and only if "


  1. 15-382 C OLLECTIVE I NTELLIGENCE โ€“ S18 L ECTURE 4: D YNAMICAL S YSTEMS 3 I NSTRUCTOR : G IANNI A. D I C ARO

  2. EQUILIBRIUM A state ๐’š " is said an equilibrium state of a dynamical system ๐’šฬ‡ = ๐’ˆ(๐’š) , ยง if and only if ๐’š " = ๐’š ๐‘ข; ๐’š " ;๐’— ๐‘ข = 0 , โˆ€ ๐‘ข โ‰ฅ 0 ยง If a trajectory reaches an equilibrium state (and if no input is applied) the trajectory will stay at the equilibrium state forever: internal systemโ€™s dynamics doesnโ€™t move the system away from the equilibrium point, velocity is null : ๐’ˆ ๐’š " = 0 2

  3. I S THE EQUILIBRIUM STABLE ? When a displacement (a force) is applied to an equilibrium condition: Stable equilibrium Unstable equilibrium Neutral equilibrium Metastable equilibrium ยง Why are equilibrium properties so important? ยง For the same definition of an abstract model of a (complex) real-world scenario 3

  4. S ANDPILES , SNOW AVALANCHES AND META - STABILITY Abelian sandpile model (starting with one billion grains pile in the center) 4

  5. L YAPUNOUV VS . S TRUCTURAL EQUILIBRIUM ๐‘ž ๐‘ž ๐‘ž Structural equilibrium: is the ยง equilibrium persistent to (small) variations in the structure of the systems? ร  Sensitivity to the value of the parameters of the vector field ๐’ˆ Lyapunouv equilibrium: stability of ยง an equilibrium with respect to a small deviation from the equilibrium point 5

  6. I S THE EQUILIBRIUM (L YAPUNOUV ) STABLE ? An equilibrium state ๐’š " is said to be Lyapunouv stable if and only if ยง for any ฮต > 0, there exists a positive number ๐œ€ ๐œ such that the inequality ๐’š 0 โˆ’ ๐’š " โ‰ค ๐œ€ implies that ๐’š ๐‘ข; ๐’š 0 ,๐’— ๐‘ข = 0 โˆ’ ๐’š " โ‰ค ฮต โˆ€ ๐‘ข โ‰ฅ 0 ๐‘ข An equilibrium state ๐’š " is stable (in the Lyapunouv sense) if the response ยง following after starting at any initial state ๐’š 0 that is sufficiently near ๐’š " will not move the state far away from ๐’š " 6

  7. I S THE EQUILIBRIUM (L YAPUNOUV ) STABLE ? What is the difference between a stable and an asymptotically stable equilibrium? 7

  8. I S THE EQUILIBRIUM ASYMPTOTICALLY STABLE ? If an equilibrium state ๐’š " is Lyapunouv stable and every motion starting ยง sufficiently near to ๐’š " converges (goes back) to ๐’š " as ๐‘ข โ†’ โˆž , the equilibrium is said asymptotically stable ๐‘ข ๐œ,๐œ€ ๐œ โ†’ 0 as ๐‘ข โ†’ โˆž 8

  9. S OLUTION OF L INEAR ODE S The general form for an ODE: ๐’šฬ‡ = ๐’ˆ(๐’š) , where ๐’ˆ is a ๐‘œ -dim vector field ยง The general form for a linear ODE: ยง ๐’šฬ‡ = ๐ต๐’š, ๐’š โˆˆ โ„ < , ๐ต an ๐‘œร—๐‘œ coefficient matrix A solution is a differentiable function ๐’€ ๐‘ข ยง that satisfies the vector field ยง Theorem: Linear combination of solutions of a linear ODE If the vector functions ๐’š (@) and ๐’š (A) are solutions of the linear system ๐’šฬ‡ = ๐’ˆ(๐’š) , then the linear combination ๐‘‘ @ ๐’š (@) + ๐‘‘ A ๐’š (A) is also a solution for any real constants ๐‘‘ @ and ๐‘‘ A ยง Corollary: Any linear combination of solutions is a solution By repeatedly applying the result of the theorem, it can be seen that every finite linear combination ๐’š ๐‘ข = ๐‘‘ @ ๐’š @ (๐‘ข) + ๐‘‘ A ๐’š A (๐‘ข) + โ€ฆ๐‘‘ E ๐’š E (๐‘ข) of solutions ๐’š @ , ๐’š A ,โ€ฆ,๐’š E is itself a solution to ๐’šฬ‡ = ๐’ˆ(๐’š) 9

  10. F UNDAMENTAL AND G ENERAL S OLUTION OF L INEAR ODE S ยง Theorem: Linearly independent solutions If the vector functions ๐’š @ , ๐’š A ,โ€ฆ, ๐’š < are linearly independent solutions of the ๐‘œ -dim linear system ๐’šฬ‡ = ๐’ˆ(๐’š) , then, each solution ๐’š(๐‘ข) can be expressed uniquely in the form: ๐’š ๐‘ข = ๐‘‘ @ ๐’š @ (๐‘ข) + ๐‘‘ A ๐’š A (๐‘ข) + โ€ฆ๐‘‘ < ๐’š < (๐‘ข) ยง Corollary: Fundamental and general solution of a linear system If solutions ๐’š @ , ๐’š A ,โ€ฆ, ๐’š < are linearly independent (for each point in the time domain), they are fundamental solutions on the domain, and the general solution to a linear ๐’šฬ‡ = ๐’ˆ(๐’š) , is given by: ๐’š ๐‘ข = ๐‘‘ @ ๐’š @ (๐‘ข) + ๐‘‘ A ๐’š A (๐‘ข) + โ€ฆ๐‘‘ < ๐’š < (๐‘ข) 10

  11. G ENERAL SOLUTIONS FOR LINEAR ODE S Corollary: Non-null Wronskian as condition for linear independence ยง The proof of the theorem uses the fact that if ๐’š @ , ๐’š A ,โ€ฆ, ๐’š < are linearly independent (on the domain), then det ๐’€ ๐‘ข โ‰  0 ๐‘ฆ @@ (๐‘ข) โ‹ฏ ๐‘ฆ @< (๐‘ข) โ‹ฎ โ‹ฑ โ‹ฎ ๐’€(๐‘ข) = Wronskian ๐‘ฆ <@ (๐‘ข) โ‹ฏ ๐‘ฆ << (๐‘ข) Therefore, ๐’š @ , ๐’š A ,โ€ฆ, ๐’š < are linearly independent if and only if W[๐’š @ , ๐’š A ,โ€ฆ, ๐’š < ](๐‘ข) โ‰  0 ยง Theorem: Use of the Wronskian to check fundamental solutions If ๐’š @ , ๐’š A ,โ€ฆ, ๐’š < are solutions, then the Wroskian is either identically to zero or else is never zero for all ๐‘ข ยง Corollary: To determine whether a given set of solutions are fundamental solutions it suffices to evaluate W[๐’š @ , ๐’š A ,โ€ฆ,๐’š < ](๐‘ข) at any point ๐‘ข 11

  12. S TABILITY OF L INEAR M ODELS ยง Letโ€™s start by studying stability in linear dynamical systems โ€ฆ The general form for a linear ODE: ยง ๐’šฬ‡ = ๐ต๐’š, ๐’š โˆˆ โ„ < , ๐ต an ๐‘œร—๐‘œ coefficient matrix Equilibrium points are the points of the Null space / Kernel of matrix ๐ต ยง ๐ต๐’š = ๐Ÿ, ๐‘œร—๐‘œ homogeneous system ยง Invertible Matrix Theorem, equivalent facts: ๐ต is invertible โŸท det ๐ต โ‰  0 ยง The only solution is the trivial solution, ๐’š = ๐Ÿ ยง Matrix ๐ต has full rank ยง < det ๐ต = โˆ ๐œ‡ U ยง , all eigenvalues are non null UV@ ยง โ€ฆ ยง In a linear dynamical system, solutions and stability of the origin depends on the eigenvalues (and eigenvectors) of the matrix ๐ต 12

  13. R ECAP ON E IGENVECTORS AND E IGENVALUES Geometry: Eigenvectors: Directions ๐’š that the linear transformation ๐ต ยง doesnโ€™t change. The eigenvalue ๐œ‡ is the scaling factor of the transformation ยง along ๐’š (the direction that stretches the most) Algebra: ยง Roots of the characteristic equation ๐‘„ ๐œ‡ = ๐œ‡๐‘ฑ โˆ’ ๐ต ๐’š = 0 โ†’ det ๐œ‡๐‘ฑ โˆ’ ๐ต = 0 ยง For 2ร—2 matrices: det ๐œ‡๐‘ฑ โˆ’ ๐ต = ๐œ‡ A โˆ’ ๐œ‡ tr ๐ต + det ๐ต ยง Algebraic multiplicity ๐’ : each eigenvalue can be repeated ๐‘œ โ‰ฅ 1 times ยง (e.g., (๐œ‡ โˆ’ 3) A , ๐‘œ = 2 ) Geometric multiplicity ๐’ : Each eigenvalue has at least one or ๐‘› โ‰ฅ 1 ยง eigenvectors, and only 1 โ‰ค ๐‘Ÿ โ‰ค ๐‘› can be linearly independent ยง An eigenvalue can be 0, as well as can be a real or a complex number 13

  14. R ECAP ON E IGENVECTORS AND E IGENVALUES 14

  15. L INEAR M ULTI -D IMENSIONAL M ODELS For the case of linear (one dimensional) growth model, ๐‘ฆฬ‡ = ๐‘๐‘ฆ, solutions ยง were in the form: ๐‘ฆ ๐‘ข = ๐‘ฆ c ๐‘“ ef ยง The sign of a would affect stability and asymptotic behavior: x = 0 is an asymptotically stable solution if a < 0, while x = 0 is an unstable solution if a > 0, since other solutions depart from x = 0 in this case. Does a multi-dimensional generalization of the form ๐’š ๐‘ข = ๐’š c ๐‘“ ๐‘ฉf hold? ยง What about operator ๐‘ฉ ? ยง A two-dimensional example: ๐’š = ๐‘ฆ @ โˆ’4 โˆ’3 ๐‘ฆฬ‡ @ = โˆ’4๐‘ฆ @ โˆ’ 3๐‘ฆ A ๐ต = ๐’š (0) = (1,1) 2 3 ๐‘ฆฬ‡ A = 2๐‘ฆ @ + 3๐‘ฆ A ๐‘ฆ A Eigenvalues and Eigenvectors of ๐ต : ยง 1 3 ๐œ‡ @ = 2, ๐’— @ = ๐œ‡ A = โˆ’3, ๐’— A = โˆ’2 โˆ’1 (real, negative) (real, positive) 15

  16. S OLUTION ( EIGENVALUES , EIGENVECTORS ) The eigenvector equation: ๐ต๐’— = ๐œ‡๐’— ยง Letโ€™s set the solution to be ๐’š ๐‘ข = ๐‘“ hf ๐’— and letsโ€™ verify that it satisfies ยง the relation ๐’šฬ‡ ๐‘ข = ๐ต๐’š Multiplying by ๐ต : ๐ต๐’š(๐‘ข) = ๐‘“ hf ๐ต๐’— , but since ๐’— is an eigenvector: ยง ๐ต๐’š ๐‘ข = ๐‘“ hf ๐ต๐’— = ๐‘“ hf (๐œ‡๐’— ) ๐’— is a fixed vector, that doesnโ€™t depend on ๐‘ข โ†’ if we take ๐’š ๐‘ข = ๐‘“ hf ๐’— ยง and differentiate it: ๐’šฬ‡ ๐‘ข = ๐œ‡๐‘“ hf ๐’— , which is the same as ๐ต๐’š ๐‘ข above Each eigenvalue-eigenvector pair ( ๐œ‡ , ๐’— ) of ๐ต leads to a solution of ๐’šฬ‡ ๐‘ข = ๐ต๐’š , taking the form: ๐’š ๐‘ข = ๐‘“ hf ๐’— ยง The general solution to the linear ODE is obtained by the linear combination of the ๐’š ๐‘ข = ๐‘‘ @ ๐‘“ h i f ๐’— @ + ๐‘‘ A ๐‘“ h j f ๐’— A individual eigenvalue solutions (since ๐œ‡ @ โ‰  ๐œ‡ A, ๐’— ๐Ÿ and ๐’— ๐Ÿ‘ are linearly independent) 16

  17. S OLUTION ( EIGENVALUES , EIGENVECTORS ) ๐’š ๐‘ข = ๐‘‘ @ ๐‘“ h i f ๐’— @ + ๐‘‘ A ๐‘“ h j f ๐’— A ๐‘ฆ A ๐’š 0 = (1,1) (1,1) 1,1 = ๐‘‘ @ (1,โˆ’2) + ๐‘‘ A (3,โˆ’1) ๐’— ๐Ÿ‘ ร  ๐‘‘ @ = โˆ’4/5 ๐‘‘ A = 3/5 ๐‘ฆ @ ๐’— @ ๐’š ๐‘ข = โˆ’4/5๐‘“ Af ๐’— @ + 3/5๐‘“ opf ๐’— A ๐‘ฆ @ ๐‘ข = โˆ’ 4 5 ๐‘“ Af + 9 5 ๐‘“ opf ๐‘ฆ A ๐‘ข = 8 5 ๐‘“ Af โˆ’ 3 5 ๐‘“ opf Saddle equilibrium (unstable) Except for two solutions that approach the origin along the direction of the ยง eigenvector ๐’— A = (3 , - 1), solutions diverge toward โˆž , although not in finite time Solutions approach to the origin from different direction, to after diverge from it ยง 17

Recommend


More recommend